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ABSTRACT

Expert systems are computer programs which emulate human expertise in well defined problem

domains. The potential payoff from expert systems is high: valuable expertise can be be captured

and preserved, repetitive and/or mundane tasks requiring human expertise can be automated, and

uniformity can be applied in decision making processes. The C Language Integrated Production

System (CLIPS) is an expert system building tool, developed at the Johnson Space Center, which

provides a complete environment for the development and delivery of rule and/or object based

expert systems. CLIPS was specifically designed to provide a low cost option for developing and

deploying expert system applications across a wide range of hardware platforms. The development

of CLIPS has helped to improve the ability to deliver expert system technology throughout the

public and private sectors for a wide range of applications and diverse computing environments.

The Third Conference on CLIPS provided a forum for CLIPS users to present and discuss papers

relating to CLIPS applications, uses, and extensions.
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Abstract

It is relatively easy to enhance CLIPS to support multiple expert systems running in a distributed
environment with heterogeneous machines. The task is minimized by using the PVM (Parallel
Virtual Machine) code from Oak Ridge Labs to provide the distributed utility. PVM is a library
of C and FORTRAN subprograms that supports distributive computing on many different UNIX
platforms. A PVM deamon is easily installed on each CPU that enters the virtual machine
environment. Any user with rsh or rexec access to a machine can use the one PVM deamon to
obtain a generous set of distributed facilities. The ready availability of both CLIPS and PVM
makes the combination of software particularly attractive for budget conscious experimentation
of heterogeneous distributive computing with multiple CLIPS executables. This paper presents a
design that is sufficient to provide essential message passing functions in CLIPS and enable the
full range of PVM facilities.

Introduction

Distributed computing systems can provide advantages over single CPU systems in several
distinct ways. They may be implemented to provide one or any combination of the following:
parallelism, fault tolerance, heterogeneity, and cost effectiveness. Our interest in distributive
systems is certainly for the cost effectiveness of the parallelism they provide. The speedup and
economy possible with multiple inexpensive CPUs executing simultaneously make possible the
applications in which we are interested, without a supercomputer host. The economy of
distributed computing may be necessary for the realization of our applications, but we are even
more interested in distributed systems to provide a simplicity of process scheduling and rapid
interaction of low granularity domain specific actions. Our approach to implementing certain
large and complex computer systems is focused on the notion of quickly providing reasoned
response to user actions.

We accomplish the response by simultaneously examining the implications of an user action
from many points of view. Most often these points of view are generated by individual CLIPS[l]
expert systems. However, there is not necessarily a consistency in these viewpoints. Also, a
domain inference may change over time, even a small period of time, as more information
becomes available. Our systems have the experts immediately receive and respond to low level
user action representations. The action representations encode the lowest level activities that are
meaningful to the user, such as the drawing of a line in a CAD environment. Thus, if there are a
dozen, or more, expert domains involved in an application, it is necessary to transmit user actions
to each expert and combine the responses into a collective result that can be presented to the user.
Of course, the intention is to emulate, in a relatively gross manner, the asynchronous parallel

cooperative manner in which a biological brain works.

Over the course of eight years, the CAL POLY CAD Research Center and CDM Technologies,

Incorporated have developed several large applications and many small experiments based
essentially on the same ideas.J2, 3, 4] In the beginning we wrote our own socket code to
communicate between the processes. Unfortunately, with each new brand of CPU introduced into
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a system it was necessary to modify the communication code. There simply are not sufficient
standards in this area to provide portability of code, except by writing functions that axe machine

specific. Moreover, our main interest is not the support of what is essentially maintenance of the
inter-process communication code. But for many years it seemed necessary to support our own
communication code because the other distributed systems we investigated were simply too

inefficient for our applications, even though they were generally much more robust. We then
found that PVM[5] code was very compatible with our reqmrements.

PVM

PVM is a free package of programs and functions that support configuration, initiation,
monitoring, communication, and termination of distributed UNIX processes among
heterogeneous CPUs. Version 3.3 makes UDP sockets available for communication between
processes on the same CPU, which is about twice as fast as the TCP sockets generally necessary
for communication between CPUs. Also, shared memory communication is possible on SPARC,

SGI, DEC, and IBM workstations, and several multiprocessor machines.

Any user can install the basic PVM daemon on a CPU and make it available to all other users. It
does not require any root privileges. Users can execute their own console program, pvm3, that

provides basic commands to dynamically configure the set CPUs that ,_11 make up the 'virtual
machine'. The basic daemon, pvmd, will establish unique dynamic soc et communications for
each user's virtual machine. Portability is obtained through the use of multiple functions that are
written specifically for each CPU that is currently supported. An environment variable is used to

identify the CPU type of each daemon and hardware specific directory names, such as SUN4, are
used to provide automatic recognition of the proper version of a PVM function. Since all of the
common UNIX platforms are currently supported, the code is very portable.

The fundamental requirements for a PVM distributed system involving CLIPS processes consist
of starting a CLIPS executable on each selected CPU and calling PVM communication facilities
from CLIPS rulesets. The first of these tasks is very easy. PVM supports a 'spawn' command

from the console program as well as a 'pyre_spawn' function that can be called from a user

application program. Both allow the user to let PVM select the CPU on which each program will
be executed or permit the user the specify a particular CPU or CPU architecture to host a

program. Over sixty basic functions are supported for application programming in C, C ++, or
FORTRAN, but only the most basic will be mentioned here and only in their C interface forms.

PVM Communication Basics

Each PVM task is identified by its 'task it'(rid), an integer assigned by the local PVM daemon.

The rid is uniquely generated within the virtual machine when either the process is spawned, or
the pvm_mytid function is fast called. Communication of messages between two processes in a

PVM system generally consists of four actions:

l. clear the message buffer and establish a new one -

2. pack typed information into the message buffer

3. send the message to a PVM task or group of tasks

4. receive the message, either blocking or not

pvm_initsend
pvm_pkint,
pvm_pkfloat, etc.
pvm send,
pyre_recast, etc.
pyre recv,
pvm_nrecv, etc.

Each message is required to be assigned an integer, 'msgtype', which is intended to identify its
format. For instance, taskl may send a message that consists of ten integers to task2. In the
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'pvm_send' used to transmit the message, the last argument is used to identify the type of
message. The programmer may decide that such a message is to be of type 4, for example. Then,
task2 can execute 'pvm_recv', specifying which task and message type it would like to receive.
A -1 value can be used as a wildcard for either parameter in order to accept messages from any
task and/or of any type. If task2 indicates that it wishes to accept only a message of type 4 to
satisfy this call, it then knows when the 'pvm_recv' blocking function succeeds that it has a
message of ten integers in a new input buffer.

As a more complete example, the following code shows a host task that will spawn a client task;
then it will send the client a message consisting of an integer and a floating point value; and then
it will wait for a reply from the client. The client waits for the message from the host, generates a
string message in reply, and halts. When the client message is received, the host prints the
message and halts.

Host Client

#include "pvm3.h" #include "pvm3.h"
mmO [ mamO{

int hostid, tids[1];/*pvm encodes pid within a taskid (rid) */
int ivaluel; /* first value to be sent */
float fvaiue2; /* second value to be sent */
char message[25]:/* string to be returned from client */

hostid ffipvm_myti& /* enroll in pvm */

pvm_spawnCClient".
(char**)0,
0,

P

1.
rids);

/* name of process to start up */
/* args to be passed to process */
/* options - 0 to use any CPU */
/* host name when not option 0"/
/* number of copies to spawn */
/* rids of processes started */

pvm_initsend(PvmDataRaw);

pvm_pkint(23, 1.1);
pvm_pkfloat(45.678, 1, 1);
pyre_send(rid[0]. 2);

int hostid, clientid;
clientkl = pvm_myfid;

pvm_recv(-1, 2); /* wait for type 2 */
/* we ignore the contents in this example */

pvm_initsend(PvmDataRaw);
pvm pkstr("Hi Host!');/* pack string */
hostid = pvm_parent0; /* get host rid */
pvm_send(hostid, 1); /* send siring */

/* as type I */

vm_exit0;

/* get buffer */
/* no encoding of dam if same type CPU */
/* pack 1 int into the currentbuffer */
/* pack 1 float into the current buffer */
/* send buffer as user chosentype2 */

pvm_recv(-I,1);

pvm_upks_(message);

/* wait for message from anyone (-1 is a */
/* wildcard) that is user typed as 1 */
/* unpack siring from buffer into message*/

prinffC'Igot the message: %s_n",message);

vm_exitO;

Figure 1. A PVM Example

CLIPS Implementation Considerations

The basic need is to assert a fact or template from a rule in one CLIPS process into the factlist of
another CLIPS process, which may be executing on a different processor. We might want a
function that could use a PVM buffer to transmit a CLIPS 'person' template as in figure 2:

( BMPutTmplt ?BufRef ( person (name "Len") ( hair "brown") (type "grumpy")) )

Figure 2. Sample Send Template Call

205



The first problem this presents is that the form of this function call is illegal. It is possible to use
a syntax in which the fact that is to be communicated is presented as a sequence of arguments,
rather than a parenthesized list. But this syntax does not preserve the appearance of the local
assert, which is pleasing to do. The solution is to add some CLIPS source code to provide a
parser for this syntax.

Second, consideration must be given as to when the PVM code that receives the messages should
execute. It is desirable that receiving functions can be called directly from the RHS of a CLIPS
rule. It is also desirable in most of our applications that message templates are transparently
asserted and deleted from the receiver's factlist without any CLIPS rules having to fh'e. In order
to accommodate the latter, our CLIPS shell checks for messages after the execution of every
CLIPS rule, and blocks for messages in the case that the CLIPS agenda becomes empty.

Third, it is useful to be able to queue message facts to be asserted and have them locally inserted
into the receiver's factlist during the same CLIPS execution cycle. There are occasions when a
number of rules might fire on a subset of the message facts that are sent. In most cases the best
decision as to what rule should fire can be made if all associated message facts are received
during one cycle, and all such rules are activated at the same time. Salience can usually be used
to select the best of such rules and the execution of the best rule can then deactivate the other
alternatives. In order to imp_.ement this third consideration, the message facts are not sent for
external assertion until a special command is given.

OVERVIEW OF CMS

The CLIPS/PVM interface or CLIPS Message System (CMS), provides efficient, cost effective
communication of simple and templated facts among a dynamic set of potentially distributed and
heterogeneous clients. These clients may be C, C ++, or CLIPS processes. Clients may
communicate either single fact objects or collections of facts as a single message. This
communication takes place without requiring either the sender or receiver to be aware of the
physical location or implementation language of the other. CMS will transmit explicit generic
simple fact forms by dynamically building C representations of any combination of basic CLIPS
atoms, such as INTEGERs, FLOATs, STRINGs, and MULTIFIELDs. CMS will also
communicate facts or templates referenced by a fact address variable.

In addition to the dynamic generic process described above, the communication of templated
facts is supported in a more static and execution time efficient manner. Specific routines capable
of manipulating client templates in a direct fashion are written for each template that is unique in
the number and type of its fields The deftemplate identifies what message form these routines
will expect. This is a distinct luxury that eliminates the time involved in dynamically determining
the number and types of fields for a generic fact that is to be communicated. The disadvantage is
that the routines must be predefined to match the templates to be communicated. However, the
applications in which the authors are involved have predetermined vocabularies for the data
objects that are to be communicated. In much the same way that deftemplates provide efficiency
through the use of predetermined objects, these template-form specific communication routines
provide object communication in the most efficient, cost-effective fashion. The following section
describes the overall architecture of a system which supports the previously described

functionality.

Architecture

The underlying support environment consists of a set of utility managers called the System
Manager, Memory Manager, and Error Manager. All three managers provide various
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functionality utilized by the communication system to perform efficient memory usage and error
notification. The core of the communication system consists of five inter-related components as
shown in Figure 3. These components are the Session Manager (SM), Buffer Manager (BM),
Communication Object Class Library, Communication Object META Class, and CLIPS
Interface Module. Collectively, these components provide the communication of objects among a
dynamic set of heterogeneous clients.

'C' Clients ] [ 'C++' Clients I

1 '
/ _

'CLIPS60' Clients ]

I
_'L_s6o ' i nte_ac--_c_

I_

I Utilities -- "

P_3,3 (Parallel Virtual Machine)_

Figure 3. Communication System Architecture

Session Manager

The Session Manager (SM) allows clients to enter and exit application sessions. Within a specific
session, clients can enter and exit any number of client groups. This functionality is particularly
useful in sending messages to all members of a group. The SM can also invoke PVM to spawn
additional application components utilizing a variety of configuration schemes. The facilities
supported range from the specification of CPUs to host the spawned applications to an automatic
selection of CPUs to use as hosts and balance the load across the virtual machine.

Buffer Manager

The buffer manager provides for the creation and manipulation of any number of fact buffers.
Dynamic in nature, these buffers can be used to communicate several fact objects as a single
atomic unit. That is, receiving CLIPS clients will accept and process the buffer's contents within
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a single execution cycle. Clients are free to 'put' or 'get' facts into and out of buffers throughout
the life of the buffer. Information as to the contents of a buffer can be obtained by querying the

buffer directly.

Communication Object Class Library

The Communication Object Class Library contains methods which are specific to a particular

data object. (These are the routines referred to in the Overview of CMS section above.) These
methods include a set of constructors and destructors along with methods to 'pack' and 'unpack'

an object component-by-component. This library includes additional methods to translate an
object to and from the CLIPS environment and the C Object representation used with PVM. It is
this class library which may require additions if new template forms are to be communicated.

Communication Object META Class

The motivation of the Communication Object META Class is twofold. The META Class

combines common object class functionality into a single collection of META Class methods.
That is, the highest level communication functions are exist as META Class methods, which

freely accept any object defined in the Object Class Library without concern for its type. The
same high-level META methods are invoked regardless of the type of objects in a
communication buffer. They determine the actual type of object to be processed and then call the
appropriate class method. This effectively allows clients to deal with a single set of methods

independent of object type.

CLIPS Interface

Essentially acting as a client to the PVM system, this collection of modules extends the
functional interface of the communication system described above to CLIPS processes. This

interface provides CLIPS clients with the same functionality as their C and C ++ counterparts. In
an effort to preserve the syntactical style of the CLIPS assert command, several parsers were
incorporated. Since the standard CLIPS external user functions interface does not support such
functionality, some additional source code to the CLIPS distribution code was required. The
following section provides a brief description of the functional interface presented to CLIPS
clients.

CMS FUNCTIONS

ID_ObjRef SMConnect0 int SMDisconnect0
Connects the caller to a multi-agent session. Disconnects the caller from a multi-

agent session.
ARGUMENTS :STRING Name ARGUMENTS : void

LONG InitIdServerValue
LONG IdServerRange RETURNS :EM_SUCCES S or EM_ERROR

RETURNS :A reference to the object represen.tation of.the c_er
or EM_ERROR_REF. Note, thzs object can ue passed to omer
clients as a way to address the caller directly.

int SMEnterGrpO
Enrolls the caller into the group <Group>.

ARGUMENTS : STRING Group
RETURNS : The caller's instance number within

<G.mup>or EM ERROR. Instance numbersstart at
0 and mcrementupward.

int SMExitGrp()
Unenrolls the caller from the group,
<Group>.

ARGUMENTS : void
RETURNS : EM_SUCCESS or EM_ERROR
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int SMSpawn0
Spawns <NumCopies> copies of <Task> in accordance
with the values of <How> and <where>.

int SPrintIdentity0
Prints the object referenced by
NIdentityRef> to stdout.

ARGUMENTS : SYMBOL Task
INTEGER NumCopies
INTEGER How

<SM_DEFAULT - Target host is determined by the Session
Manager. In this case <Where> should be NULL.

SM_HOST - Target host is determined by <Where>.
SM_ARCH - Target host is determined by the Session

Manager. The target host's architecture will be of
type <Where>.

SM_DEBUG - Target host is determined by the Session

ARGUMENTS : ID_Obj_ef IdentityRef
RETURNS : EM_SUCCESS or EM_ERROR

BM_BufRef BMCreate0
Creates a "send" buffer which encodes its
contentsaccordingto<Encoding>.

ARGUMENTS :INTEGER Encoding
<BM_DEFAULT - Data for heterogeneous

networks
Manager. In this case <Where> should be NULL. All copies BM_RAW - No encoding takes place
of <Task> will be run in the PVM debugger. BM_IN_PLACE - Same as

SM_TRACE - Target host is determined by the Session Manager. BM_DEFAULT except data is not
In this case <Where> should be NULL. All copies of copied into the buffer until it is sent. >
<Task> will generate PVM trace data. > RETURNS : A reference to buffer or

EM_ERROR_REF

SYMBOL Where
<Examples: "moby.cadrc.calpoly.edu", or SUN4>

int BMDestroy()
Destroys the buffer referencedby <BufRef>.

MORE ARGS ArgV
<Any # of args passed to each task upon startup.>

RETURNS : Actual number of spawned tasks or EM_ERROR.

int BMPutTmplt0
Places <Tmplt> into <Bufl_ef>.

ARGUMENTS : BM_BufRef BulRef
DEFTEMPLATE Tmplt

RETURNS : EM_SUCCESS or EM_ERROR

ARGUMENTS : BM_BufRef BufRef
RETURNS : EM_SUCCESS or EM_ERROR

int BMSend0
Sends contents of <BufRef> to <IdentityRef>.
The contents of <BufRef> is left unaltered.

ARGUMENTS :ID_ObjRef IdentityRef
BM_BufRef BufRef

RETURNS : EM_SUCCESS or EM_ERROR

int BMGrpSend0
Sends the contentsof <BufRef> to each member of <Group>.

ARGUMENTS : STRING Group

BM_BufRef BufRef

RETURNS : EM_SUCCESS or EM_ERROR

int BMQueryReceive0
Formally processes incoming object groups. If no pending
object groups exist, control is IMMEDIATELY returned
to the caller.

ARGUMENTS : void
RETURNS : EM_SUCCESS or EM_ERROR

int SGrpSendIdentity0
Sends an identity to each member of a group.

ARGUMENTS : STRING Group
ID_ObjRef ObjRef

RETURNS : EM_SUCCESS or EM_ERROR

int BMReceive0
Formally processes incoming object groups. If
no pending object groups exist, caller is put to
sleep until such an event occurs. Received
thobjectswill be placed into the caller's fact-list in

eir appropriate form.

ARGUMENTS : void
RETURNS : EM_SUCCESS or EM_ERROR

int SSendIdentity0
Sends an identity to another clienL

ARGUMENTS :ID_Ob_Ref DstIdentityRef
ID ObjRef ObjRef

RETURNS : EM_SLICCESS or EM_ERROR

int SGrpSendTmpit0
Sends a template to each member of a group.

ARGUMENTS : STRING Group
Expression Tmplt

RETURNS : EM SUCCESS orEM ERROR

int SSendTmpit0
Sends a template to another client.

ARGUMENTS :ID_ObjRef DstIdentityRef
l_TURression Tmplt

NS : EM SUCCESS orEM ERROR
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Figure 4. CMS Functions

A CMS EXAMPLE

The following example illustrates a CLIPS knowledge base intended to communicate
VALUE FRAME templates with CMS. The example consists of four CLIPS constructs: one
deftemplate and three defrules. The first step of the example is to define a VALUE FRAME
template having four slots. The client registers itself in the session via the CONNECT'ME rule.
This rule also enters the client into a group. The rule then broadcasts the client's identity to all

other members of its group. Incoming identifications are processed by the
RECEIVE IDENTITY rule. After receiving another client's identification, several

VALUE FRAME facts are placed into a buffer and sent back to the client.
m

Incoming VALUE FRAME facts are processed by the PROCESS VALUE FRAME rule.
Finally, when there_tre no more rules on the agenda, the client goes into a blocldng receive state
via the execution of the RECEIVE rule. CLIPS clients receive facts in two distinct manners. In
the fin'st case, the communication system is queried at the end of each execution cycle for

pending messages. The second method by which a client can receive messages is through an
explicit call to BMReceive. The functionality of this call is identical to the implicit method, with
the exception that the caller will be put to sleep until a pending message exists. In either case,
incoming facts are processed transparently to the client and produce immediate modifications of
the fact-list.

(deftemplate VALUE FRAME
m

(slot Frame )
(slot Instance)
(slot Slot )
(slot Value )

)

(defmleRECEIVE IDENTITY

IBM_DEFAULT_Mode )SESSION-MEMBER ?Name
CAN-BE-REFERENCED-BY ?Identity

)
_-->

, Send our new friend some templates
( bind .?BufRef ( BMCreate ?Mode ) )

( BMPutTmplt ?BufRef ( VALUE_FRAME
( Frame Framel )
(Instance Instancel )
( Slot Slotl )
(Value 1234 )

)
)
( BMPutTmplt ?BufRef ( VALUE_FRAME

( Frame Frame2 )
(Instance Instance2)
(Slot Slot2)
( Value 56.789 )

)
)
( BMPutTmplt ?BufRef ( VALUE_FRAME

( Frame Frame3 )
( Instance Instance3 )
( Slot Slot3 )

(defmleCONNECT '_ME
(initial-fact)

(bind?MyName "Access")
(bind?MyGrp "AgentGrp")

; Connecttothesession
( bind ?MyId ( SMConnect ?MyName 200 200)

; Join a group
(SMEnte|rGrp ?MFGm )

;Sendmy identitytomembersofmy group
(SGrpsendIdcnuty?MyGrp 7Myld)

; Assert the "receive" conlrol fact

(as_r,(RECEIVE ))

(defrule PROCESS VALUE FRAMES
?TMPLT <- ( VA]_UE FRAIV_

( Frame ?Frame )

Instance ?Instance )Slot ?S_ )
(Value?Value)

)
ffi>

; Process the template

(retract ?TMPLT )

210



( Value
)

)
; Send the buffer to our new friend?
( BMSend ?Identity ?BufRef)

; Destroy the buffer
( BM'De_'oy ?BulRef)

"How arc you 7" )

) )
Figure 5. A CMS

(defruleRECEIVE
(declare(salience -10000) )
?REC <- (RECEIVE)

=>

( BMReceive )
( retract?REC )
(assert(I_CEIVE ))

Sample

CONCLUSION

PVM and CLIPS bothprovidefreesourcecode systemsthatarewellmaintainedby developers
and a sizablenumber of users.Relativefew sourcecode changesarcnecessarytoeithersystem
in orderto builda reliableand robustplatformthatwillsupportdistributedcomputing in a
heterogeneousenvironmentof CPUs operatingunderUNIX. The CMS systemdescribedinthis
paperprovidestheCLIPS interfacecode and some parsingcode sufficienttoenableefficientuse

ofPVM facilitiesand communicationof CLIPS factsand templatesamong C, C "t+,and CLIPS
processeswithina PVM virtualmachine.Even more efficientcommunication can bc obtained
throughenhancements to thePVM sourcecode thatcan providemore efficientallocationof
memory and reuseofPVM messagebuffersincertainapplications.

NOTES

Information on PVM is best obtained by anonymous ftp from: netlib2.cs.utk.edu
Shar and tar packages are available from the same source.

The authors are currently using the CMS system in applications that involve multiple CLIPS
expert systems in sophisticated interactive user interface settings. It is expected that the basic
CMS code will become available in the Spring, 1995. Inquiries via e-mail are preferred.
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ABSTRACT

As evidenced by current literature, there appears to be a continued interest in the study of real-

time expert systems. It is generally recognized that speed of execution is only one consideration

when designing an effective real-time expert system. Some other features one must consider are

the expert system's ability to perform temporal reasoning, handle interrupts, prioritize data,

contend with data uncertainty, and perform context focusing as dictated by the incoming data to

the expert system.

This paper presents a strategy for implementing a real time expert system on the iPSC/860

hypercube parallel computer using CLIPS. The strategy takes into consideration, not only the

execution time of the software, but also those features which define a true real-time expert

system. The methodology is then demonstrated using a practical implementation of an expert

system which performs diagnostics on the Space Shuttle Main Engine (SSME).

This particular implementation uses an eight node hypercube to process ten sensor measurements

in order to simultaneously diagnose five different failure modes within the SSME. The main

program is written in ANSI C and embeds CLIPS to better facilitate and debug the rule based

expert system.

INTRODUCTION

Strictly defined, an expert system is a computer program which imitates the functions of a human

expert in a particular field [ 1]. An expert system may be described as a real-time expert system if

it can respond to user inputs within some reasonable span of time during which input data remains

valid. A vast body of recently published research clearly indicates an active interest in the area of

real-time expert systems [2-12].

Science and engineering objectives for future NASA missions require an increased level of

autonomy for both onboard and ground based systems due to the extraordinary quantities of

information to be processed as well as the long transmission delays inherent to space missions.

[ 13]. An expert system for REusable Rocket Engine Diagnostics Systems (REREDS) has been

investigated by NASA Lewis Research Center [14, 15, 16]. Sequential implementations of the

expert system have been found to be too slow to analyze data for practical implementation. As

implemented sequentially, REREDS already exhibits a certain degree of inherent parallelism. Ten
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Abstract

The Program Development Environment PDE is a tool for massively parallel pro-

gramming of distributed-memory architectures. Adopting a knowledge-based ap-

proach, the PDE eliminates the complexity introduced by parallel hardware with

distributed memory and offers complete transparency in respect of parallelism ex-

ploitation. The knowledge-based part of the PDE is realized in CLIPS. Its principal

task is to find an efficient parallel realization of the application specified by the

user in a comfortable, abstract, domain-oriented formalism. A large collection of

fine-grain parallel algorithmic skeletons, represented as COOL objects in a tree hi-

erarchy, contains the algorithmic knowledge. A hybrid knowledge base with rule

modules and procedural parts, encoding expertise about application domain, paral-

lel programming, software engineering, and parallel hardware, enables a high degree

of automation in the software development process.

In this paper, important aspects of the implementation of the PDE using CLIPS

and COOL are shown, including the embedding of CLIPS with C++-based parts of
the PDE. The appropriateness of the chosen approach and of the CLIPS language

for knowledge-based software engineering are discussed.

1 INTRODUCTION

Massive parallelism is expected to provide the next substantial increase in computing

power needed for current and future scientific applications. Whereas there exists a variety

of hardware platforms offering massive parallelism, a comfortable programming environ-

ment making programming of distributed-memory architectures as easy as programming

single address space systems is still missing. The programmer of parallel hardware is

typically confronted with aspects not found on conventional architectures, such as data

decomposition, data and load distribution, data communication, process coordination,

varying data access delays, and processor topology. Approaches to a simplification of

parallel programming that have been used previously, in particular for shared-memory

architectures, are transformational and compile-time parallelization [Po188, ZC90]. How-

ever, such code-level parallelization is extremely difficult for distributed architectures.

Additionally, only a limited, fine-grain part of the opportunities for parallel execution

within the program can be detected, and the results are dependent on the programming

style of the programmer. The detection of conceptual, coarse-grain parallelism found in
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(nearly) simultaneousdata requests. By adding a second server node to the system, this

contention can be greatly reduced.

Since the data can be processed at a fast, continuous rate, the validity of sensor measurements can

be assured during processing. Consequently, truth maintenance is realized by suppressing data

requests to the server node until all sensor measurements have been simultaneously updated. This

guarantees that all data accessed by the failure detector nodes during any processing cycle is the

same "age.'"

Due to the nature of the particular expert system selected for this research, the time required by

the failure detectors to process SSME data remains constant regardless of whether or not a failure

condition exists. Thus, predictability is always assured for this example. Also, the need for

temporal reasoning is not explicitly indicated and is therefore not investigated. Since these aspects

of the design are application specific, they and must be investigated in future work using different

expert system models.

As discussed earlier, uncertainty handling is inherent to this expert system. The voting scheme and

use of confidence levels permits reasoning, even in the presence of noisy, incomplete, or

inconsistent data. Since the output from the system is a graded value rather than a binary value,

the output carries with it additional information about the expert system's confidence that a

particular failure is occurring.

One of the most important features of this design is that program flow control and system I/O is

accomplished in C language code. Using CLIPS as an embedded application within a fast,

compiled body of C language code allows the expert system to be more easily integrated into a

practical production system. Complex reasoning can be relegated directly and exclusively to the

nodes invoking the CLIPS environment, while tasks which are better suited to C language code

can be performed by the server and manager nodes. Thus, simple decisions can be realized quickly

in C language rather than relying on the slower CLIPS environment. Based on fast preprocessing

of the sensor measurements, the C language code can be used to initiate process interrupts during

emergency conditions and even change the context focusing of the expert system. Those tasks

which require complex reasoning can be developed and refined separately in CLIPS, taking full

advantage of the debugging tools available in the CLIPS development environment.

While the rules for this particular expert system are somewhat simple compared to other

applications considered in the literature, it is believed that the approach used in this study can be

extended to other examples. This study demonstrates that parallel processing can not only speed

up the execution of certain expert systems, but also incorporate other important features essential

for real-time operation.
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Each individual failure detector was implemented in CLIPS on a personal computer and its

accuracy was tested and verified using simulated SSME sensor data. Once satisfactory results

were achieved, an ANSI C program was written for the iPSC/860 hypercube computer which

would initialize the CLIPS environment on five nodes of a 23 hypercube structure. These five

nodes, referred to as the failure detector nodes, load the constructs for one failure detector each,

and use CLIPS as an embedded application as described in the CLIPS Advanced Programming

Guide [20]. In this way, CLIPS will only be used for evaluation of the REREDS rules. All other

programming requirements, including opening and closing of sensor measurement data files,

preliminary data analysis, and program flow control are handled in C language. By embedding the

CLIPS modules within ANSI C code, context focusing and process interruptions can be more

efficiently realized.

Coordination of data acquisition and distribution among the failure detector nodes is

accomplished through a server node which is programmed to furnish sensor measurement data to

requesting nodes. Since the data for this study originate from the SSME simulator test bed, data

retrieval is accomplished simply by reading sequential data from prepared data files. The server

node transfers incoming sensor measurements into an indexed memory array, or blackboard, from

which data are distributed upon request to the failure detector nodes. When the blackboard is

updated, all requests for data are ignored until data transfer is completed. This assures that

reasoning within the expert system is always performed on contemporaneous data. The server

node does not invoke the CLIPS environment at any time. It is programmed entirely in C

language code.

One additional node, referred to as the manager node, is used by the expert system to coordinate

the timing between the failure detector nodes and the server node. Like the server node, the

manager node does not invoke the CLIPS environment. Once the manager node has received a

"ready" message from all failure detector nodes, it orders the server node to refresh the data in the

blackboard. During this refresh, the failure detector nodes save their results to permanent storage

on the system. The activities and process flow of all three types of nodes used in this research are

illustrated in Figure 2. The asterisk denotes the point at which all nodes synchronize.

CONCLUSION

Profiling studies were conducted on the parallel implementation of the REREDS expert system. It

was found that the system could process the sensor measurements and report confidence levels

for all five failure modes in 18 milliseconds. A sequential implementation of the expert system on

the same hardware was found to require over 50 milliseconds to process and report the same

information, indicating that the parallel implementation can process data at nearly three times as

quickly. Considering the fact that seven processors are being used in the parallel implementation,

these results may seem somewhat disappointing, however, the profiling studies also indicate that

additional speedup can be realized in future implementations of this expert system if the data

blackboard is also parallelized. Using only one server node causes some hardware contention.

Shortly after the nodes synchronize, the failure detectors tend to overwhelm the server with five
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Once a vote has been assigned to every sensor measurement, each failure detector averages the

votes for all of its corresponding sensor measurements. The final result will be a number between

-1.00 and +1.00. This result is converted to a percent and is

Failure

Detector

F11/15

F67

Description

Labyrinth/Turbine Seal Leak

HPOTP Turbine Interstage &

Tip Seal Wear

Measurements

LPFP Discharge Pressure
FPOV Valve Position

HPFTP Turbine Discharge Temp.

HPOTP Discharge Temperature

HPOP Discharge Pressure

HPOTP Shaft Speed
MCC Pressure

Failure

States

Low

High

High

Low

Low

Low

Low

F68 Intermediate Seal Wear Secondary Seal Drain Temperature Low

HPOTP Inter-Seal Drain Pressure Low

F69 HPOP Primary Seal Wear HPOP Primary Seal Drain Pressure

Secondary Seal Drain Pressure

Secondary Seal Drain Temperature

HPOP Discharge Pressure

HPOTP Shaft Speed
MCC Pressure

FT0 Pump Cavitation

High

High

High

Low

Low

Low

Table !, - Failure Detectors Only Requiting Sensor

Measurements for Failure Diagnosis

Failure Vote

1.0

0.0

-1.0

Narrird
MeasutEr_nt

Vdue

Range of Measureme_

- 1.0

0,0

-1.0

Figure l. - Voting Curve for Sensor Measurement with "High" Failure State

referred to as the corresponding confidence level of that failure mode. The underlying motivation

for this approach is to add inherent uncertainty handling to the expert system.
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sensormeasurementsare used to diagnosethe presenceof five different failures which may
manifestthemselvesin the working SSME.Eachmoduleof codewhichdiagnosesone failure is
referredto as a failure detector.While someof the sensormeasurementsare sharedbetween
failure detectors,the computationswithin thesedetectorsare completelyindependentof one
other.

One apparentway to partition the problemof detectingfailuresin the SSME, is to assigneach
failuredetectorto its own nodeon the hypercubesystem.Becausethe failuredetectorsmaybe
processedsimultaneously,a speedupin the executionis expected.But whileexecutiontimeis a
critical parameterin anyreal-timeexpertsystem,it is not theonly ingredientrequiredin orderto
guaranteeits success.A recentreport characterizedthe featuresrequiredof expert systemsto
operatein real-time.In additionto therequirementof fastexecution,the real-timeexpert system
should also possessthe ability to perform context focusing, interrupt handling, temporal
reasoning,uncertaintyhandling,and truth maintenance.Furthermore,the computationaltime
requiredby thesystemshouldbepredictableandthe expert systemshouldpotentiallybe ableto
communicatewith other expert systems[17]. These aspectsare consideredin the design
presentedin this paper.

= -_ 2 (

METHODS

The rules for diagnosing failures in the SSME were elicited from NASA engineers and translated

into an off-line implementation of a REREDS expert system [ 18]. While some of the failures can

be diagnosed using only sensor measurements, other failures require both data measurements and

the results obtained from condition monitors. The condition monitors measure both angular

velocity and acceleration on various bearings of the High Pressure Oxidizer Turbo-Pump

(HPOTP) shaft and determine the magnitudes of various torsional modes in the HPOTP shaft

[19]. Due to the lack of availability of high frequency beating data and additional hardware

requirements for implementing real-time condition monitors, this expert system considered only

those failure detectors which required sensor measurements alone.

The five failure detectors which rely solely on sensor measurements for diagnosis are listed in

Table 1 along with a description of the failure, the required sensor measurements, and their

respective, relative failure states. Notice that failure detectors designated F11 and F15 cannot be

differentiated from one another and are thus combined into one single failure mode.

For each sensor measurement listed, the expert system knowledge base is programmed with a set

of nominal values and deviation values (designated in our work by t_). One of the roles of the

expert system is to match incoming sensor measurements with the nominal and deviation values

which correspond to the specific power level of the SSME at any given time. Any sensor

measurement may deviate from the nominal value by + a without being considered high or low

relative to nominal. Beyond the _ deviation, the sensor measurement is rated with a value which is

linearly dependent upon the amount of deviation. This value is referred to as a vote and is used by

a failure detector to determine a confidence level that the failure mode is present. This voting

curve is illustrated in Figure 1.

213



many applications from natural sciences and engineering is in general too complicated for

current parallelization techniques.

Our Program Development Environment PDE [Dvo93, DDR94] is a tool for programming

massively parallel computer systems with distributed memory. Its primary goal is to

handle all complexity introduced by the parallel hardware in a user-transparent way.

To break the current limitations in code parallelization, we approach parallel program

development with knowledge-based techniques and with user support starting at an earlier

phase in program development, at the specification and design phase.

In this paper we focus on the expert system part of the PDE realized in the CLIPS [GR94]

language. At first, a short overview of the PDE is given. The representation and use of

knowledge is the topic of section 3. This is followed by sections showing aspects of external

interfaces, problem representation, and embedding with C+÷. The important role of

an object-oriented approach will be elaborated in these parts. A discussion of results,

the appropriateness of the CLIPS language, and the current state of the development

concludes the paper.

2 OVERVIEW OF THE PDE

The basic methodology of programming with the PDE consists of three steps [DR92]:

1. Problem specification using a domain-specific, high-level formalism

2. Interactive refinement and completion of the specification (if needed)

3. User-transparent generation of compilable program code

According to this three-step approach to the programming process, the program develop-

ment environment consists of the three functional components shown in Fig. 1. In a typical

User

Programming Assistant
Interfaces

Programming Assistant PA

% Structural features Parallel framework /

/

Computational featureF

Program Synthesizer

Parallel hardware

Figure 1: The conceptual structure of the PDE
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session, the programmer gives an initial specification of the problem under consideration

using a programming assistant interface. Currently, we have an interface SMPAI covering

the domain of stencil-based applications on n-dimensional grids. Other interfaces are in

preparation. The initial problem specification is decomposed into the purely computa-

tional features and the features relevant for the parallel structure. The first are passed

directly to the Program Synthesizer PS, the latter go to the Programming Assistant PA.

Then, in interaction with the user, the PA extracts and completes the information needed

to determine an appropriate parallel framework. The PA is the central, largely AI-based

component of the PDE, relying on various kinds of expert knowledge. The program syn-

thesizer expands the parallel framework into compilable, hardware specific, parallel C++

or C programs.

3 REPRESENTATION OF ALGORITHMIC KNOWLEDGE

The PDE embodies a skeleton-oriented approach [Col89] to knowledge-based software

engineering. A large collection of hierarchically organized fine-grain skeletons forms the

algorithmic knowledge. The hierarchy spans from a general, abstract skeleton at the root

to highly problem-specific, optimized skeletons at the leaf-level. Skeleton nodes in the

tree represent a number of different entities. First, every non-leaf skeleton is a decision

point for the rule-based descent. The descendants are specializations of the actual node

in one particular aspect, the discrimination criterion of the skeleton. Every skeleton node

contains information about the discrimination criterion and value that leads to its selection

among the descendants of its parent node. The discrimination criteria represent concepts

from parallel programming, application domain, and characteristics the supported parallel

hardware architectures. Second, a skeleton node holds information about requirements

other than the discrimination criterion that have to be checked before a descent is done.

Third, skeleton nodes have slots for other kind of information that is not checked during

descent but that may be helpful for the user or for subsequent steps. Finally, the skeleton

nodes have attached methods or message handlers that are able to dynamically generate

the parallel framework for the problem to be solved with the chosen skeleton.

Based on these different roles, the question arises whether the skeleton knowledge base

should be built using instance or class objects. To access information in slots, a skeleton

node should be an instance of a suitable class. However, to attach specialized methods or

message-handlers at any node, skeletons have to be represented using classes. Also, the

specialization type of the hierarchy suggests the use of a class hierarchy for the skeleton

tree. We have solved the conflict by using both a class and an instance as the represen-

tation of a single skeleton node. A simplified example skeleton class is:

(defclass skel-32 (is-a init-bnd-mixin skel-5)

(pattern-match reactive)

(slot discrimination-crit (default problem-type) (create-accessor read))

(slot discrimination-value (default INIT_BND_VAL_PROBLEM)

(create-accessor read) )

(multislot constraints (create-accessor read-write))

(multislot required (default (creates gridinstances_requirement))

(create-accessor read)))

The required slot holds instances of the requirements mentioned above. Constraints are
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an additional concept used for describing restrictions in application scope.

All instances of the skeleton nodes are generated automatically with a simple function:

(deffunction create-instances (?rootclass)

(progn$ (?node (class-subclasses ?rootclass

(make-instance ?node of ?node)))

inherit))

The two basic operations on the skeleton tree are the finding of the optimal skeleton, i.e.,

the descent in the tree, and the generation of the computational framework based on a

selected node.

3.1 Rule-based skeleton tree descent

The descent in the skeleton tree is driven by rules. Based on the discrimination criterion of

the current node, rules match on particular characteristics of the application specification

and try to derive a value for the criterion. If a descendant node with the derived criterion

value exists, it will get the candidate for the descent. The following example rule tries to

find a descendant matching the grid coloring property of the specification:

(defrule DESC::coloring-1

?obj <- (object (name [descent_object])

(curr_skel ?skel))

?inst <- (object (discrimination-crit coloring)

(discrimination-value ?c))

(test (memberS

?res <- (object

?app <- (object

=>

(send ?obj

(send ?obj

(class ?inst) (class-subclasses

(nr_of_colors ?c))

(is-a PAapp_class)

(results ?res))

put-next_skel ?inst)

put-decision_ok t))

(class ?skel))))

The pattern matching relies heavily on object patterns. The whole expert system is

programmed practically without the use of facts. The rule first matches a descent object,

then a skeleton which is a descendant of the current skeleton and finally the nr_of_colors

slot of the problem specification. Note that the particular ordering of object patterns is

induced by some peculiarities of the CLIPS 6.0 pattern matching procedure. In order to

handle references to objects in other modules, it is advisable to use instance addresses

instead of instance names. CLIPS does not match objects from imported modules when

they are refered to by a name property and the module name is not explicitly given. On

the other hand, CLIPS has no instance-address property for object patterns and the form

?obj <- (object ...) does not allow ?obj to be a bound variable. So, the ordering

of patterns is restricted in such a way that first an object gets matched and then it is

verified whether it is the desired one. The consequence is probably some loss in pattern

matching efficiency.

Although our initial problem domain is sufficiently restricted and well-defined to allow a

complete, automatic descent in most cases, there is a collection of user interaction tools,

called the Intelligent Skeleton Programming Environment ISPE, ready to handle the case
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whenthe descentstopsbeforereachinga sufficiently elaboratedskeleton.With the ISPE,
the usercan add missing information, selecta descendantnode manually, or evenstep
through the tree guided by the expert system. For sucha functionality, the ISPE needs
a high integration with the expert system. The rules for the descentare divided into
various modules, separating searchfor descendants,verification and actual descent in
different rule modules. The object of classdescent_class usedin the rule aboveserves
to keeptrack of the current state of descentand to coordinatebetweenthe rule modules.

3.2 Generating output from the skeleton tree

After successful selection of a skeleton node for the application under consideration, the

parallel framework can be generated. This is done by calling message-handlers attached

to all skeletons. An example parallel framework for a simple stencil problem is:

init(Grid);

FOR (iter = 0; iter < nr_of_iterations; iter++)

FOR (color = 0; color < 3; color++) DO

INTERACTION

fill_buf(Grid, w_obuf, west, color);

Exchange(e_ibuf, east, w_obuf, west);

scatter_buf(Grid, e_ibuf, east, color);

DO

,o°°,

END;

CALCULATION

update(Grid,

END;

ENDFOR;

ENDFOR;

finish(Grid);

color);

The building blocks of this formalism [BG94] are communication and computation pro-

cedure calls, grouped by sequencing or iteration statements.

Object-oriented concepts are realized for optimizing the representational efficiency in the

skeleton tree. First, inheritance insures that information stored in the slots of the skeleton

nodes is passed down the tree. If from a certain point on it does not apply any more, it

can be overriden. Second, new behaviour is introduced with mixin classes. As it can be

seen in the skel-32 node shown earlier, each node has both a mixin class and the parent

class in its superclass list. In this way, it is possible to define a particular feature only

once, but to add it at various points in the tree. Finally, instead of having methods that

for each skeleton individually generate the complete parallel framework, an incremental

method combination approach has been chosen. Every method first calls the same method

of its parent node and then makes its own additions. The message-handler below shows

this basic structure:

(defmessage-handler stencil-MS-mixin generate-MS

(bind ?inst (call-next-handler))

(send ?inst put-global_rare

(creates .... )))

()
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Message-handlers instead of methods have to be used for this kind of incremental struc-

ture, as methods in CLIPS do not have dynamic precedence computation, whereas message-

handlers do. Using methods, the sequence of skeleton and method definitions in the source

file would be dominant for the precedence instead of the class hierarchy at runtime.

4 INTERFACES AND PROBLEM REPRESENTATIONS

The expert system of the PDE has basically three interfaces to the outside. It receives

input from the problem specification tools, generates the parallel framework as output for

the program synthesizer component, and it has an interface for user interaction.

4.1 Input

In order to omit a parser written in CLIPS, the formalism for the problem specification

was chosen to be directly readable into CLIPS. A natural way to achieve this consists

in using instance-generating constructs. We have two types of constructs in the input

formalism, for example:

(make-instance global_spec of global_spec_class

(grid_const 1.0)

(dimension 2)

(problem_type BND_VAL_PROBLEM))

(stencil_spec (assign_op (grid_vat f (coord 0 0))

(function_call median

(grid_var f

(grid_vat f

(grid_var f

(coord -1 0))

(coord 0 0))

(coord 1 0)))))

In the first statement above, where global properties of the application are defined, the

make-instance is part of the formalism. Obviously, reading such a construct from a file

with the CLIPS batch command generates an instance of the respective class and initial-

izes the slots. In the second case, where the stencil is defined, the instance-generating abil-

ity is not directly visible. However, for every keyword such as stencil_spec, assign_op

or grid_var, there are functions creating instances of respective classes, e.g.:

(deffunction grid_var (?name ?coord)

(bind ?inst (make-instance (gensym*)

(send ?inst put-vat_name ?name)

(send ?inst put-coord ?coord))

of grid_var))

The reasons to not use make-instance in all cases are that some constructs can have

multiple entities of the same name, e.g., a stencil can have multiple assignment operations,

and additional processing that is needed by some constructs.

The lack of nested lists in CLIPS was considered as a disadvantage at the beginning,

in particular regarding the close relation between CLIPS and Lisp/CLOS. However, a

recursive list construct can be easily defined with COOL objects and instance-generation
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functions similar to the oneabove. Certainly, this is not appropriate if runtime efficiency
is critical. In the course of the PDE development,the lack of lists proved to have a
positive effect on style and readability. For example, instead of using just the list (-1
1 2) for a 3-D coordinate, using the construct (coord -1 1 2) createsan instance of
a specializedclassfor coordinate tuples. Suchan instancecan be easierhandledthan a
list and appropriate methods or message-handlerscan be defined. The whole problem
representation after reading the specification input is present in a number of nested,
interconnectedinstancesof respectiveclasses.

4.2 Output

The result of the generation of the parallel framework is a problem representation by means

of a number of instances, much in the sense of the input representation shown above. The

writing of an output file as shown in section 3.2 is done with message-handlers attached

to each of the relevant problem representation classes, e.g., a for-loop is written by:

(defmessage-handler for_loop_class write-out (?stream)

(printout ?stream " FOR (" ?self:varname " = " ?self:from

". " ?self:varname " < " ?self:till

". " ?self:varname "++) DO " t)
J

(progn$ (?el ?self :subs)

(send ?el write-out ?stream))

(printout ?stream " ENDFOR;" t))

5 EMBEDDING WITH C++

The global structure of the PDE consists of components written in C++, among them the

main program and the graphical user interface, and an embedded CLIPS expert system

for knowledge representation and reasoning. Additionally, two parsers use the Lex/Yacc

utilities. Whereas some components, such as the parsers, are integrated only by means of

intermediate files for input and output, the expert system is highly integrated with the

C++-based ISPE and the graphical user interface. The CLIPS dialog itself is visible to

the user through a CLIPS base window. Figure 2 shows both the CLIPS dialog window

and a browser window for graphically browsing the skeleton tree.

5.1 Data integration

Both CLIPS and C++ offer objects for the representation of data. It is therefore a

straightforward decision to use the object mechanism for the data integration between

an expert system written in CLIPS and programs written in C++. The concept for the

CLIPS-C++ integration relies on the decisions to represent common data on the CLIPS

side using COOL objects and to provide wrapper classes on the C++ side for a transparent

access to COOL objects. A class hierarchy has been built in C++ to represent CLIPS

types, including classes and instances. Access to COOL classes is needed for example in

the skeleton tree browser, where descendants of a node are only found by inspecting the

subclasses list of the node.
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CLIPS> (PA)

descending : skeleton-type data-parallel

descending : skeleton-type stencil
descending : coloring 2

descending : decomp-dim 2
comm-directions : (south)

comm-directions : (west)

comm-directions : (north)
comm-directions : (east)

n-s-symmetry : yes
e-w-symmetry : yes
descending : stencil-dim 2
descending : symmetric stencil
descending : max communication links dim : 1
CLIPS> (output_text)
Slave definition:

loop : do %ili max
sync comm : north_south color 0

sync comm : east_wes% color 0
perform computation, color 0
sync COmffi : north_south color 1
sync comm : east_west color 1
perform computation, color 1

t

stenct" leftsion

cation-dis

Figure 2: The CLIPS window and the skeleton tree browser

The C++ wrapper classes consist of an abstract class clips_type with subclasses for the

CLIPS data types integer, float, symbol, string, multifield, and for COOL classes and

instances. The class coolframe used to represent COOL instances is shown below:

class coolframe : public clips_type {

char* framename ;

public :

coolframe(char* name) ;

clips_type, get_slot(char* slotname) ;

int put_slot(char* slotname, clips_type, value);

char, class_of (); };

The creation of a C++ frontend to a COOL instance is performed by just instantiating

the above class, giving the constructor the name of the COOL instance. Accesses to

slots have to be done by using the get_siot_and put_slot_ member functions that refer to

functions in the CLIPS external interface [NAS93]. The class coolframe is a generic class,

usable for any COOL instance, no matter what collection of slots the COOL instance has.

A more sophisticated approach with separate members for all slots would be somewhat

more convenient, as the distinction between accessing a C÷+ object and accessing a
COOL object through the C+÷ wrapper would be completely blurred. However, defining

classes on the fly, based on the structure of the COOL instances, is not possible in C÷÷.

The chosen system with general-purpose wrapper classes is already convenient for use

in C÷+. Operators and functions in C+÷ can be overloaded to handle CLIPS data

transparently. For example, the basic mathematical operations can be overloaded to

combine C÷÷ numbers with CLIPS numbers in one expression.

Care has to be taken to not introduce inconsistencies between the data stored in CLIPS

and the C++ wrappers. To this end, the C++ interface to CLIPS does not cache any
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information, and beforeperforming anyaccessthrough the CLIPS external interface it is
verified whether the COOL object to beaccessedstill exists.

5.2 Functional integration

The goal with functional integration is to achieve fine-grain control over the reasoning

in the expert system from C++-based components whenever needed. For example, it is

sometimes desirable to check whether one single descent from the current skeleton node is

possible. Or, the user may prefer to step manually through the tree, getting support from

the expert system. The detailed control needed for such tasks has been achieved with a

partitioning of the rules into a number of rule modules. Then, the C++ component can

set the focus to just the rule system desired and start the reasoning.

Two basic means to interact from the C++ components to the CLIPS expert system

exist in the PDE. First, a C++ program can call any of the C functions from the CLIPS

external interface. This happens without user visibility in the CLIPS dialog window, and a

return value can be obtained from the call. Second, thanks to the graphical user interface

written in C++, the C++ program can directly write to the dialog window in such a

way that CLIPS thinks it received input at the command line. Using this alternative, no

return value can be passed back to the C++ component, but the interaction is visible to

the user in the window. It is thus most suited to starting the reasoning or other functions

that produce output or a trace in the dialog window.

6 CONCLUSIONS

The realization of the parallel program development environment PDE has successfully

achieved the primary goal of making parallel programming as simple as sequential pro-

gramming within the initial problem domain of stencil-based applications. Moreover,

thanks to programming environment support spanning from the design level up to au-

tomated code generation and thanks to the reuse of important software components,

parallel programming with the PDE can be considered substantially simpler and more

reliable than sequential programming in a common procedural language. Apart from

the high-level, domain-oriented approach to programming, the PDE offers to the user

efficiency preserving portability of software across platforms, reuse of critical software

components, and a flexible and comfortable interface.

With a focus on the parts realized using CLIPS, various aspects of the implementation

of our knowledge-based parallel program development tool PDE have been shown in this

paper. CLIPS in its current version 6.0 [NAS93] proved to have some critical properties

making it particularly well-suited for the use within the PDE. Of highest importance

are probably the object-oriented capabilities of CLIPS, enabling flexible interfaces to

the outside, appropriate representations of knowledge and intermediate problem states,

and, together with the CLIPS external interface, a convenient embedding with the C++

components of the PDE. CLIPS is well suited for a rapid prototyping approach to system

development, in particular due to the flexibility that the object-oriented mechanism can

offer. The PDE development is currently in the fourth prototype. Apart from the first

throw-away prototype done in CLOS [BDG+88], each prototype reuses large parts of the

previous one, adding completely new components or new functionality.
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The problems with the CLIPS language encountered during the PDE development relate

in part to the resemblance of CLIPS to CLOS. Examples are the lack of the lists in the

sense of Lisp, the static precedence determination for methods, or the inability to pass

methods or functions as first-class objects. But alternatives offering similar functionality

have been found in all cases. Apart from such CLOS-like items, a Suggestion for improve-

ment of the CLIPS language based on our experience is to focus more on object patterns

in rules than on facts or templates. An useful extension of the CLIPS external interface,

based on the popularity of the C++ programming language, would be the definition and

documentation of a C++ frontend for COOL objects.
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ABSTRACT

The requirement for improving aircraft utilization and responsiveness in airlift operations has been

recognized for quite some time by the Canadian Forces. To date, the utilization of scarce airlift

resources has been planned mainly through the employment of manpower-intensive manual

methods in combination with the expertise of highly qualified personnel. In this paper, we address

the problem of facilitating the load planning process for military aircraft cargo planes through the

development of a computer-based system. We introduce TALBAS (Transport Aircraft Loading

and BAlancing System), a knowledge-based system designed to assist personnel involved in

preparing valid load plans for the C130 Hercules aircraft. The main features of this system which

are accessible through a convivial graphical user interface, consists of the automatic generation

of valid cargo arrangements given a list of items to be transported, the user-definition of load

plans and the automatic validation of such load plans.

INTRODUCTION

The aircratt load planning activitiy represents the complex task of finding the best possible cargo

arrangement within the aircraft cargo bay, given a list 0fvarious items to be transported. In such an

arrangement, efficient use of the aircraft space and payload has to be made while giving due

consideration to various constraints such as the aircraft centre of gravity and other safety and mission

related requirements. The diversity of the equipment to be transported and the variety of situations

which may be encountered dictate that highly trained and experienced personnel be employed to

achieve valid load plans. Additionally, successful support of military operations requires

responsiveness in modifying conceived load plans (sometimes referred to as "chalks") to satisfy
last-minute requirements.

The development of a decision support system to assist load planning personnel in their task

appears to be a natural approach when addressing the simultaneous satisfaction of the numerous

domain constraints. The chief idea behind TALBAS consists of encoding the knowledge of

domain experts as a set of production rules. The first section of this paper is devoted to a

description of the fundamental characteristics of the load planning problem. A review of major

contributions and research work in the field of computer-assisted load planning is then presented.
The next section provides a detailed description of the TALBAS architecture and an overview of

the modelled reasoning approach used to achieve valid load plans. Finally, a list of possible

extensions to the current system is given.

233



PROBLEM STATEMENT

The problem of interest may be briefly stated as summarized by Bayer and Stackwick [1]:

" there are various types of aircraft which may be used, each with different capabilities

and restrictions and different modes in which it may be loaded, and finally, there is a

large variety of equipment to be transported."

Additionally, the load's center-of-balance must fall within a pre-defined Center of Gravity (CG)

envelope for all loading methods, otherwise imbalance can render the airplane dynamically

unstable in extreme cases.

First addressing the issue of diversity of equipment to be transported, we note that each aircraft

can be loaded with cargo including any or all of the following items: wheeled vehicles, palletized

cargo, tracked vehicles, helicopters, miscellaneous equipment and personnel. Each type of cargo

item requires different considerations. The wide variety of cargo items to be loaded poses a

significant difficulty in that a feasible load configuration has to be selected from a very large

number of possible cargo arrangements, given a number of pre-defined areas within the aircraft

cargo bay which may each impose different restrictions on the type of item which may be loaded

depending on weight limitations and other constraints.

Secondly, the load arrangements are dependent upon the following delivery methods : strategic

air/land, airdrop, low-altitude parachute extraction system (LAPES) and tactical air/land.

For strategic air/land missions, the emphasis is on maximum use of aircraft space and few tactical

considerations are involved. In a tactical air/land mission however, speed and ease with which

cargo can be on-loaded and off-loaded takes precedence.

Airdrop operations consist of off-loading equipment and personnel by parachute. LAPES is

executed when the aircraft is flown very close to the ground over a fiat, clear area. In this case,

an extraction parachute is deployed from the rear of the aircraft, after which the aircraft reascends.

The equipment, mounted on a special platform, is pulled from the aircraft by the drag on a

parachute and skids to a halt. Airdrop and LAPES missions must maintain aircraft balance while

dropping cargo and must also provide space between items for parachute cables.

A third issue concerns the characteristics and limitations pertaining to the type of aircraft being

loaded. The load capacity of an aircraft depends on its maximum design gross weight (i.e.,

weight when rounded or upon take-off), its maximum landing gross weight and maximum zero

fuel weight (i.e., weight of aircraft and its load when fuel tanks are empty). The maximum design

gross weight includes the fuel load to be carried which is determined, at the outset, on the basis
of the distance to be flown and other operational requirements. The established quantity of

aircraft fuel in turn influences the allowable load which corresponds to the maximum

cargo/personnel weight the aircraft can carry.

Finally, constraints pertaining to loading, unloading and in-flight limitations have to be checked

when an item is loaded into the aircraft cargo bay. To model a realistic situation, safety and

mission related restrictions and parameters such as transport of dangerous goods and

cargo/personnel movement priorities, are also taken into account in the set of constraints.
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A mathematical formulation of the aircraft loading problem may be obtained through the

application of Operations Research techniques. The underlying closely related bin-packing

problem (Friesen and Langston [2]) is known to be NP-hard in the strong sense, suggesting it is

unlikely that a polynomial solution exists (Garey and Johnson [3]). However, if the requirement

of finding the best solution is relaxed to finding a good solution, then heuristic techniques can be

applied successfully (Pearl [4]). For a number of reasons to be presented later in this paper, we

propose to adopt a heuristic approach based on the knowledge of domain experts. In the following

section, we undertake a review of two successful endeavors aimed at facilitating aircraft load
planning, that is AALPS and CALM.

The Automated Aircraft Load Planning System (AALPS)

AALPS was developed for the US Forces in the early 1980s, using the Sun workstation as the

platform. This load planning tool is a knowledge-based system built using the expertise of highly
trained loadmasters.

The underlying system architecture is designed to serve three basic functions: the automatic

generation of valid loads, validation of user-defined load plans and user-modification of existing

load plans. To perform these tasks, AALPS incorporates four components:

1) a graphical user interface which maintains a graphical image of the aircraft and

equipment as cargo items are being loaded;

2) an equipment and aircraft databases which contain both dimensional information and

special characteristics such as those required to compute the aircraft CG;

3) the loading module which contains the procedural knowledge used to build feasible
aircraft loads; and

4) a database which allows the user to indicate his preference from a set of available

loading strategies.

Despite its seemingly powerful features, AALPS would probably necessitate some improvements

at significant costs to meet the requirements of the Canadian Forces.

Another initiative in the area of computer-assisted load planning led to the implementation of the

Computer Aided Load Manifest (CALM), which was initiated by the US Air Force Logistics
Management Centre in 1981.

The Computer Aided Load Manifest (CALM)

The project to develop CALM, formerly called DMES (Deployment Mobility Execution System),

was launched at approximately the same time as AALPS but the established objectives were

slightly different. In contrast with AALPS, CALM was to be a deployable computer-based load

planning system. Consequently, the selected hardware was to be easily transportable and

sufficiently resistant for operation in the field.

CALM uses a modified cutting stock heuristic to generate "first-cut" cargo loads, which the

planner can alter through interactive graphics.
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Thissystemincorporatesfewerfunctional capabilitiesthanAALPS andrunson a PC compatible

platform, thus resulting in significantly lower development costs. A major reproach, however,

is that this system does not appear to take explicitly into account important load planning data such

as the weight of the aircraft fuel being carded, hence leading to incomplete results in some cases.

Additionally, the graphical interface would require some improvement to be considered

sufficiently user-friendly. In spite of these deficiencies, CALM remains a very useful tool to aid

in the load planning process.

In view of the successful research work accomplished in the area of automated aircraft load

planning based on the emulation of expert behavior in this field, we have decided to concentrate

our efforts on the development of an expert system. The intent in doing so, is to combine the

most valuable features present in the existing systems, namely AALPS and CALM, and to adapt

them to produce a tool tailored to the Canadian military environment. Our objective is to develop

a system with the following features:

1) be deployable to and operable at remote sites;

2) be easy to use and provide a convivial user interface;

3) be capable of handling aircraft load planning problems involving a wide variety of

items and several aircraft types used by the Canadian Forces;

4) deal with different types of mission, including the ones with more than one destination;

5) automatically generate valid load plans in a reasonable time;

6) allow the user to alter plans automatically generated by the system;

7) allow users to define their own load plans and issue warnings whenever constraints are

violated.

The next section will describe the functional architecture and design of TALBAS which enable the

integration of the above described desired features.

THE SYSTEM ARCHITECTURE

The functional architecture depicted at Figure 1 serves the same three basic functions as in

AALPS: automatic generation of cargo arrangements, user-definition of load plans and automatic

validation of existing load plans. TALBAS consists of an interactive user interface, a loading

module, a mission and an aircraft database, and necessary communication links for access to some

databases available within the Canadian Forces. The following provides a description of the

various databases required to build a feasible cargo load:

1) the aircraft database contains detailed aircraft characteristics including dimensional

information and a description of the constraint regions for the C130 Hercules aircraft;

2) the mission database contains detailed mission features mainly in the form of applicable

loading strategies;
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Figure I • TALBAS Functional Architecture

3) the equipment and cargo list databases together provide a detailed listing of all cargo

items and personnel to be deployed for a mission, including all necessary information

about each particular object such as the weight and dimensional characteristics, and the

order in which the items are to be transported To minimize the requirement for user

input, a set of default values are provided for the majority of the objects'

characteristics and these may be changed at the user's request as the situation dictates.

The user interface module performs two main tasks: the graphical display and the constraints

checking. The aircraft floor and the items being loaded are graphically represented on the screen.

Objects representing loaded cargo items and the various areas of the aircraft cargo floor are drawn

on the basis of information available in the different databases described above. All onscreen

cargo items are treated as active objects; they can be dragged and moved within the aircraft cargo

bay after being selected with a mouse.

The constraints checker ensures that any violation of the center of gravity limits or of other in-

flight restrictions is reported through the display of warning message dialog boxes. All the critical

load planning data, such as the aircraft CG upon take-off, are computed every time an item is

placed or moved within the aircraft cargo area.

The loading module basically consists of an expert system which automatically generates valid

load plans. The load planning process will be reviewed in details in the next section.

TALBAS has been developed through the implementation of an incremental prototyping

methodology whereby the end user is continuously involved in the refining process of the current

prototype. The availability of an ever-improved GUI and loading module, allows for a fail-safe
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capture of user requirements. The PC platform has been selected for development purposes in

order to produce, in a cost effective fashion, a deployable tool operable at remote sites as a stand-

alone system. TALBAS has been designed with an object oriented approach to favor reusability.

The user interface has been implemented using Microsoft Windows and C + +. The expert system

portion of TALBAS is an enhanced application of the expert system shell CLIPS. This module

has been created as a Dynamic-Link Library (DLL). A DLL is a set of functions that are linked

with the main application at run time which is, in our case, the user interface. When faced with

the problem of having CLIPS communicate with the graphical user interface, three alternatives

were contemplated: embedding of CLIPS-based loading module into the main program;

implementation of the CLIPS-based loading module as a DLL: or use of the Dynamic Data

Exchange (DDE) concept.

DDE is most appropriate for data exchanges that do not require ongoing user interaction.

However, the requirement for the devised expert system to constantly monitor any changes made

by the user when modifying load plans onscreen has made the approach an unacceptable one.

Embedding the CLIPS-based loading module within the main application required that both the

user interface and the loading module fit within 64K of static data. This is not possible since the

CLIPS-based application (version 6.0) uses all this amount of memory space. On the other hand,

implementing the CLIPS-based application as a DLL allows the former and the user interface to

be considered separately such that each of the two application codes can fit within the limit of 64K

of static data.

The Loading Module

A heuristic approach has been selected as a solution to address the load planning problem. The

loading methodologies applied by loadmasters and load planners have been encoded as a set of

production rules. This choice was f'trst motivated by the fact that rules of thumb are often the only

means available to the experts when seeking a good first try---ore requiring the fewest alterations--

- to achieve a valid load. As an example, load planning experts generally agree to follow a

"60--40" rule of thumb, namely 60% of the load weight has to be located at the front of the

aircraft and 40% at the rear. The second reason for the choice of a knowledge-based system is that

the expert knowledge represented in the form of production rules can be easily maintained and

updated to incorporate new assets as they are acquired by the Canadian Forces or to adapt to new

situations.

Among the three basic objectives, namely the automatic generation of valid load plans, the

automatic validation of user-defined load plans and the user-definition of load plans, the first two

are achieved using the expert system in TALBAS. The third objective is achieved through the

implementation of a graphical user interface allowing the user to manipulate objects onscreen.

The expert system is made of two distinct modules as can be seen from Figure 2. The Loading

knowledge-base contains all the information related to aircraft loading procedures while the rules

contained in the Validation knowledge-base allow the system to recover from situations

characterized by a non-balanced aircraft or violated constraints.
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The Loading knowledge-base contains all roles which are essential to initially identify one possible
load configuration. As in AALPS, an initial cargo state contained in a database of facts is

iteratively transformed by our system into an acceptable cargo arrangement by applying a

sequence of operators representing the loadmaster's knowledge. In generating a load

configuration, pre-defined areas of the aircraft floor are assigned to each category of items or

passengers to be transported. For instance, when both cargo and passengers have to be loaded,

passengers are usually assigned to the front of the aircraft. Next, a selection of the appropriate

item in each category (e.g. vehicles) is made, based on weight, width and length considerations.

Since the aircraft balance is a primary concern, a preliminary selection among all cargo items is

accomplished on the basis of weight followed by consideration of dimensional information

depending on the type of item selected. The integrated computation module will subsequently
compute the achieved CG and verify that numerical constraints have not been violated.

At this step, the coded heuristics contained in the loading knowledge-base are likely to have

produced an acceptable "first-cut" load plan. However, the system will try to find a cargo

arrangement characterized by an optimal CG value while ensuring that all constraints are satisfied.
If the initial load is not acceptable, the system will make use of rules stored in the validation

knowledge-base to fast slide the loaded items, if there is sufficient aircraft space remaining to do

so, or attempt to rearrange these items if sliding operations are not feasible. TALBAS will stop

when it has identified either an optimal load plan or an acceptable one. In such cases where no

possible solutions may be found for the list of given items to be loaded and no more permutations
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can be made, the system issues a warning message indicating that no valid load plans can be found

with that combination of items.

A second role played by the expert system module concerns the validation of user-defined load

plans. In this case, it operates in the same fashion as described above when automatically

generating valid load plans with the difference that the initial load plan is produced by the user

himself.

CONCLUSION AND FUTURE WORK

In this paper, we have presented a knowledge-based alternative to facilitate load planning of military

aircraft. We have successfully incorporated most of the valuable features present in the existing

systems, AALPS and CALM, and adapted them to produce a tool tailored to meet the specific

requirements of the Canadian military environment. The major concerns which have been addressed

were the deployability and conviviality of the designed system. The CLIPS-based expert system

module automatically generates valid load configurations and validates user-defined/modified load

plans. The developed graphical user interface allows for the easy alteration of existing plans.

Efforts in the design of the developed system have been primarily focused on the loading of the

C 130 Hercules aircraft, since it is currently the principal airlift resource used by the Canadian

Forces for the transport of cargo and personnel. The system may however, be easily adapted to

accommodate other existing or future types of Canadian Forces transport aircraft. Expansion of

TALBAS to permit the loading of several aircraft, while giving due consideration to the movement

priority level assigned to each item to be airlifted, is currently under development.
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ABSTRACT

The Naval Research Laboratory has developed an oceanographic expert system that
describes the evolution of mesoscale features in the Gulf Stream region of the northwest Atlantic
Ocean. These features include the Gulf Stream current and the warm and cold core eddies
associated with the Gulf Stream. An explanation capability was added to the eddy prediction
component of the expert system in order to allow the system to justify the reasoning process it uses
to make predictions. The eddy prediction and explanation components of the system have recently
been redesigned and translated from OPS83 to C and CLIPS and the new system is called WATE
(Where Are Those Eddies). The new design has improved the system's readability,

understandability and maintainability and wig also allow the system to be incorporated into the
_Semi.-Automated Mesoscale Analysis System which will eventually be embedded into the Navy s
Tactical Environmental Support System, Third Generation, TESS(3).

1. INTRODUCTION

One of the major reasons CLIPS is so widely used is the ease with which it allows a rule base to be
inked as one component of a larger system. This has cectainly been the case with the eddy
.predi.ction component of the Semi-Automated Mesoscale Analysis System (SAMAS) (3). SAMAS
.is an linage analysis system d.eyeloped by the Naval Research Laboratory that includes a variety of
.linage analysis tools that enal_le the detecaon of mesoscale oceanographic features in satellite
xmages. Unfortunately, in the North Atlantic, many of the images are obscured by cloud cover for
!ength_y p_'ods, of time. A hybrid system for use.when features cannot be detected in images has
been aeveloped that consists of a neural network that predicts movement of the Gulf Stream and a
rule base that predicts movement of eddies associated with the Gulf Stream. The Gulf Stream and
eddy prediction components were both originally implemented in OPS83 (4). The Gulf Stream
Prediction Module has been replaced by a neural network (3) and an explanation component has
recen..tl), bee_ added to the OPS83 version of the eddy prediction component (1). The eddy
prediction rule base, WATE (Where Are Those Eddies), has been translated to CLIPS because of
the ease of integrating a CLIPS rule base into a larger system, the ability to access routines written
in C from CLIPS rules, and the support CLIPS provides for the forward chaining reasoning used
by the eddy prediction system. The explanation component of WATE uses meta rules written in
CLIPS to compose either rule traces or summary explanations of the predicted movement of
eddies.

1This work was suIvorted by the Naval Research Laboratory, Stems Space Center under contract NAS 13-330.
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2. SYSTEM ARCHITECTURE

2.1 External Interfaces

The WATE component interacts with other SAMAS components as shown in Figure 1.
WATE interacts with the User Interface in two ways. First, WATE is invoked from the User
Interface when the user requests a prediction of Gulf Stream and eddy movement for a specified
time. Second, as WATE predicts the movement of the Gulf Stream by calling the Gulf Stream
Prediction Module and eddies by running the rule base, WATE calls User Intertace routines to
update the graphical display of the positions of the Gulf Stream and eddies. The eddy prediction
rules call the Geometry Routines to compute distances and locations. WATE invokes the Gulf
Stream Prediction Module to predict the movement of the Gulf Stream for each time step. The
position of the Gulf Stream predicted by the neural network component must be accesS., by the
eddy prediction rule base since the movement of eddies is influenced by the position ot the Gulf
Stream.

Figure 1. External Interfaces of WATE
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Gulf
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Prediction

Module

,----I_

User

Interface

_ii__i!iii_i_i_i_i_i_i_i_i_iii_ii_ii_i_iiii_i_ii_!ii_i_iii_i_i_i_i_!_i_
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2.2 Redesigned Control Structure

The control structure for the original ex .l_'t" system was written in proced.,ural OPS._co¢l_e and
had been modified a number of times as the graphical user interface, eddy prediction, (Jult Stream
prediction, and explanation components were either modified or added. The result was a contro!
structure that was not modular and that contained a substantial number of obsolete variables and
statements. When the system was converted from OPS83, the control structure was complete!y
redesigned and rewritten in C. Pseudo code for the redesigned control structure is shown m
Figure 2. The resulting code was more efficient because it was written in compiled C code rather
than interpreted OPS83procedurat code.
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Figure 2. Control Structure of WATE

Initialization
GetUserOptions
SetUpCLIPS
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Update display of GS
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Update display of eddies

Explanation
Explanation Composition
Explanation Presentation

FinalOutput

2.3 Translation from OPS83 to CLIPS

The original OPS83 working memory elements and rules had been completely restructured
to support an explanation component (1). The translation of this restructured OPS83 code into
CLIPS was fairly simple since CLIPS has evolved from the OPS line. There is a very
straightforward translation from OPS83 working memory elements to CLIPS fact templates and
from OPS rules to CLIPS rules. In some cases, the OPS83 rules called OPS83 functions or
procedures. These functions and procedures were translated to C.

3. EXPLANATION COMPONENT

The explanation component allows the user to ask for either a rule trace or summary
explanation for the prediction of the movement of each eddy at the end of each prediction eyrie.
The rule trace explanations give a detailed trace of the instantiation of all rules that were fired to

duictthe movement of an eddy. Although this type of trace has proven to be very useful in
gging the system, it was immediately apparent that it contained a great deal of information that

would be of little interest to most users. Interviews with domain experts were used to determine
the information that would be of most interest to a user. The types of information they identified
was used to design the summary explanations. Presentation of these explanations requires that the
line of reasoning of the system be captured as the rules fired and that information from this rule
trace be extracted and organized for presentation to the user.

3.1 Rule Firing Capture

Capturing the rule trace for this domain in a usable form is simplified because all
explanations (both trace and summary) ate focused on a particular eddy. This means that all of the
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rule-fh'ings pertaining to the movement of one eddy can be stored together and presented as one
explanation. This is accomplished by asserting a rule-fire-record template fact for each eddy for
each time step with the following deftemplate definition:

(deftemplate rule-fire-record
(field ringtype
(field refno
(field time
(multifield rules-fired

(allowed-symbols wcr co.))
(type INTEGER))
(type INTEGER))
(type SYMBOL)))

The ringtype, eddy identifier (refno), and time stamp (t/me) uniquely identify each rule-fire-
record. The rules-fired multifield is used to store a list of the names of the rules that fired to predict
the movement of the eddy during this time step. Each time a rule fires as part of the prediction
process for a particular eddy, the rule name is added to the end of the rules-fired list.

A second set of template facts is used to record the instantiation of each rule that fires.
Each time a rule fires, a values-for-explanation template fact is asserted which gives the value
bound to each variable when the rule was fired. The deftemplate definition for values-for-
explanation is:

(deftemplate values-for-explanation
(field rule-name
(field ringtype
(field refno
(field time
(multifield var-val

(type SYMBOL))
(allowed-symbols wer co'))
(type INTEGER))
(type INTEGER))
(type SYMBOL)))

This template contains slots for the rule name, the eddy identifier and type, and the time stamp. In
addition, it contains a multifietd slot whose value is a sequence of variable value pairs that gives the
name of each variable used in the rule-firing and the value bound to that variable when the rule
fn-ed. This approach can be used in this domain because a single rule will never fire more than
one time for a particular eddy during one time step, and all slots in templates used by the eddy
prediction rules are single value. The records of the rules that fired for a particular eddy are used
by meta rules to produce the explanations.

3.2 Explanation Construction and Presentation

If the user requests an explanation for a specific eddy, a set of explanation meta rules are
used to construct an explanation for the predicted movement of an eddy. The user may request
either a rule-trace explanation or a summary explanation. When the user makes the request, a
sequence of exp/a/n-eddy facts for that eddy are asserted each with a progressively higher time
stamp. The fact template for an explain-eddy fact is:

(explain-eddy ecrlwcr <ref-no> <time> summary Irule-trace).

The presence of this fact causes the explain-single-eddy rule to fire one time for each rule that fired
to predict the movement of the eddy for that time step. Each explain-single-eddy rule firing
matches a rule name from the rules-fired slot of the rule-fire-record with a values-for-explanation
template for that eddy type, number, and time stamp. A fiU-tanplate fact is then asserted into
working memory which contains all of the information needed to explain that rule firing--either in
rule-trace or summary form. For each rule, there are two explanation meta rules. The first is used
when a rule-trace has been requested and is a natural language translation of the rule. It will give
the value of all variables used in the rule instantiation. The second is used when a summary has
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beenrequested.It givesa muchshortersummaryof the actions of the rule. A few rules that are
used to control the sequence of rule-firing produce no text for a summary explanation. When an
explanation metarule fires, it causes a natural language translation of the rule to be sent to the user
interface for presentation to the user.

The user may request an explanation of the movement of all eddies instead of just a single
eddy. In this case, the process above is simply repeated for each eddy.

4. SUMMARY AND FUTURE WORK

WATE has been successfully converted from OPS83 to C and CLIPS. This conversion
will facilitate the incorporation of WATE into SAMAS 1.2 which will eventually he embedded in
TESS(3). The modular control structure of WATE is easier to understand and maintain than that of
the previous system. The explanation component has been implemented using CLIPS metarules.
This causes some additional maintenance burden since the two metarules that correspond to each
rule must be modified if a rule is modified. In the present system, the rule-fire-record and values-
for-explanation template facts are asserted by each individual rule. We are currently modifying the
CLIPS inference engine to capture this information automatically as the rules fire.

Explanations produced by the current system have two major shortcomings. First, there is
still a great deal of room for improvement in the summarization capabilities of the system. In
particular, the system should be summarizing over both temporal and spatial dimensions. If an
eddy's predicted movement is essentially in the same direction and speed for each time step, then
all of this information should be collapsed into one explanation. Likewise, if several eddies all
have similar movement over one or more time steps, this should be collapsed into a single
explanation. The second shortcoming deals with the lack of explanation of the predictions of the
neural network component. Some recent results reported in the literature have addressed this sort
of problem.

m
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ABSTRACT

An Intelligent Individualized Instruction (I 3) system is being built to provide computerized
instruction. We present the roles of a translator and a problem solver m an intelligent computer

system. The modular design of the system provides for easier development and allows for future
expansion and maintenance. CLIPS modules and classes are utilized for the purpose of the
modular design and inter module communications. CLIPS facts and roles are used to represent the
system components and the knowledge base. CLIPS provides an inferencing mechanism to allow

the 13 system to solve problems presented to it in English.

INTRODUCTION

The Intelligent Individualized Instruction (13) system is an intelligent teaching system that makes
possible the knowledge transfer from a human to a computer system (knowledge acquisition), and

from the system to a human (intelligent tutoring system (ITS)). The ITS portion of the 13 system

provides an interactive learning environment where the system provides self-sufficient instruction
and solves the problem presented in a written natural language. Self-sufficient instruction means
that no instructor is required during the learning cycle. Solving problems written in a natural

language means that the system is able to 'understand' the natural language: It is not an easy task,
especially without any restriction on the usage of vocabulary and/or format.

Two 13 system modules, a Translator and an Expert (a problem solver and a domain glossary),
understand a problem presented to it in English by translation and keyword pattern matching

processes. The P's pattern matching method uses the case-based par'sing [Riesbeck and Schank
1989] that searches its memory (knowledge base) to match the problem with stored phrase

templates. Unlike other case-based parsers (e.g., CYC project [Lenat and Feigenbaum, 1989]) the

13 system does not understand the problem statement as a human does. A human uses common
sense or other background knowledge to understand it. Rather the 13 system 'understands'

enough about the problem for the system to be able to solve the problem. We will discuss how the
system 'understands' the human language.

AN INTELLIGENT INDIVIDUALIZED INSTRUCTION (I 3) SYSTEM

The 13 system is a Knowledge Based System that is composed of domain dependent modules,
domain independent modules, and a User interface module. The domain dependent modules (the
Domain Expert and the Domain Expert Instructor) carry the domain expertise that enables the other
modules remain domain independent. The separation of these domain dependent modules from the

rest of the system makes the system reusable. Whenever the 13 system is applied to another
domain, only the domain-dependent knowledge of the new domain is needed.
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Figure 1. System architecture of I3's intelligent teaching system

The goal of the I3 system is to provide a student with individualized learning to attain competency

[Biegel 1993]. The 13 knowledge presentation subsystem generates self-sufficient instructions.

The 13 system contains instructional components (Student Model, Teacher, Domain Expert
Instructor, Control, and User Interface) and problem solving components (Translator and Domain
Expert).

• The Student Model module evaluates and maintains the trainee's performance overall or on
individual lessons.

• The Teacher module contains the knowledge about generic didactic strategies to customize each
lesson by selecting and sequencing the instruction material.

• The Domain Expert Instructor (DEI) module represents the domain dependent teaching
methodology. The DEI module provides the Teacher module with the teaching strategies, and
the Student Model module with the evaluation criteria for the individual and/or overall lesson.

• The Control module manages the operation and maintains the modules' communications within
the system.

• The User Interface module handles all communications between the user and the system.
• The Translator module parses a trainee's input and translates it into a system-understandable

format.

• The Domain Expert (DE) module contains a knowledge base representing the problem-solving
knowledge of a human domain expert.

DESIGN OF THE TRANSLATOR AND THE PROBLEM SOLVER

The Translator module and the Domain Expert module provide the user with the proper
interpretation of the problem and the correct solution. Together, they allow a system to apply
domain expert heuristics to solve problems by pattern matching. Pattern matching allows the
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systemto 'understand'aproblemstatementwithin thedomainfor whichthesystemhasbeenbuilt.
Theproblemstatementcanbetranslatedinto asetof rulesandfacts. Sincetheproblemsolver
cannottranslateEnglish(orothernaturallanguage)directlyintocomputerreadablecode,it relies
onatranslatorto provideacommunicationmechanismbetweentheuserandthecomputer.

TheTranslatorprovidesafull duplexcommunicationmediumbetweenthehumanandthe
computer.Theuserwill notbeconstrainedin theformatof theinput problemandwill notbe
requiredto doanyparsingorbe restrictedto a limited syntax.TheTranslatormoduletranslatesthe
domainjargonof an inputproblemintoasystemunderstandableformat.

Themajortasksof thetranslatorare:(1)to converttextintocomputerreadablecode,and(2) to
provideaknowledgebaseconversionandproblemrepresentationprocess.Thetext conversion
processincludescheckingfor correctspellingandremovingall unnecessarysymbols.The
knowledgebaseconversionprocessincludes(1) theconversionof awrittennumberto anumeric
value,(2) filtering outunnecessarywords,and(3) replacingwordswith stem(root)orexemplar
words. Theknowledgebasedprocessusesanumberconversionlist, a list of wordsunnecessary
for problemsolving,andadomainthesaurus.TheIntelligentIndividualizedInstructionsystem
separatestheknowledgebase(domainglossary)which is thecollectionof thedomainthesaurus,
thedomaintemplatedictionary,andtheunnecessarywordlisting,from thetranslationprocess.

TheDomainExpertinterpretsthetranslatedinputusingadomainvocabularyasareference,selects
asuitablemethodfrom a list of solutionmethods,andfindsasolution.TheDomainExpert(DE)
consistsof threeparts,aDomainGlossary(DG), asetof Managers,andaProblemSolver(PS).
TheDE imitatestheexpert'smethodologiesof problemsolvingiTheDG actsastheexpert's
memo_ by providingthenecessaryproblemsolvingknowledge.EachManageractsasthe
experts proceduralknowledgeby solvingaroutineof theproblemin onespecificarea.ThePS
actsastheschedulingandreasoningprocessesby controllingandschedulingtheManagersin
proceedingtowardthesolutionof aproblem.

TheDomainGlossaryrepresentsthedomainexpertise.TheDG consistsof adomaintemplate
dictionary,adomainthesaurus,anunnecessaryword listing,adomainsymbollist, andadomain
theorylist. TheDG representsrelationalknowledge(e.g.,oneyearis twelvemonths),factual
knowledge(e.g.,'interestrate' meansdomainvariablei), andalist of wordsandsymbols(e.g.,
'%' hasaspecialmeaningof interestratein theEngineeringEconomydomain).

Specialdictionariesfor thedomainprovidebenefitssuchasfasterlook upaccessthanageneral
dictionary,andahigherpriority to find thecorrectinterpretation.Theproblemsolverdoesnot
haveto considerall differentcombinationsof words' variables.It searchesits ownsmaller
dictionarythatcontainsthenecessaryinformationin theapplicationdomain. Englishtext
(problemstatement)is interpreted/translatedby usingthedomainthesauruswithout knowingthe
generalmeaningof theword. Thethesauruscontainsall wordsrelevantto thedomain.Eachword
isconnectedto alist of possibleinterpretations.Eachwordin thestatementis lookedup in the
thesaurusandreplacedby all relevantsymbols.

Thenumberof wordsin thedomainvocabularywill varybetweendomains,buta vocabularyof
500or sowordsandsymbolswill mostlikely covermostof theundergraduateengineering
domains.

EachManagerhandlesonespecificareaof problemsolving. It is aself-sufficientobjectthat
containsproceduralknowledge(rules)andfactualknowledge(facts)attachedto it, andthatknows
howto handlesituationsuponrequest.Whenactivated,aManagersearchestheinputstatementfor
matchedpatternsin its templates.If amatchis found,theManagerprocessesor interpretsthat
portionof theproblemstatement.Forexample,aDateManagerknowshow to interpretkeyterms
thatarerelatedto thedate,how to comparetwo dateinstances,andhowto calculatetheperiod
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from twodateinstances.Whenaproblemstatementcontains"... invest$5000onJanuary1,
1994.... will be accumulatedin5 yearshence :.. ", theDateManagerreplacesthestatementwith
" ... invest$5000on [D1] ... will beaccumulatedin [D2] ... "where [D1] and[D2] areinstances
of aDateclassandarerepresentedas:

([Date::DI] is a Date ([Date::D2] is a Date

(year 1994) (year 5)
(month l) (month 0)

(day 1) (day 0)
(base none) ) (base [Date: :D l]) )

Some mangers handle both domain dependent and independent situations based on the factual
knowledge they have. Communication among managers can be made through dedicated
communication channels, such as CLIPS class objects or templates.

The Domain Expert module is of a modular design and maintains the separation of strategic
knowledge from factual knowledge. The domain expertise can be categorized into three levels:
high level control knowledge (a Problem Solver), middle level procedural knowledge (Managers),
and low level factual knowledge (a Domain Glossary). By nature, the low level factual knowledge
tends to be domain specific, and the high level control knowledge tends to be a domain
independent. Any addition to the knowledge base can be accomplished by adding a Manager and
its associated knowledge into the DG.

PROBLEM SOLVING IN THE P SYSTEM

The problem solver applies a separate-and-solve method that breaks a problem statement into
several small blocks, interprets each block, and then logically restructures them. The problem
solving steps include interpretation of the problem statement, selection of the formula, and
mathematical calculation. The steps are depicted in Figure 2 in which boxes on the left hand side

represent the changes of the problem statement from input English text to the answer. The middle
ovals show the problem solving processors. The right hand side boxes represent the domain
expertise of the domain glossary. The problem solving process is generic so it can be used in other
domains if the new domain expertise is available.

The 13 system problem solving routine is performed by the problem solving components: the User
Interface, the Translator, and the Domain Expert (the Problem Solver, the Managers, and the
Domain Glossary). The routine includes initial domain independent processes (translating and
filtering an input problem), and main domain dependent processes (interpreting the problem,
selecting a solution method, and deriving an answer).

A user enters an engineering economics problem through the User Interface, as shown in Figure 3.
The Translator performs filtering process by checking correct spelling using its English dictionary.
The Translator converts the input problem statement into system understandable format; plural
words to singular; past tense to present; uppercase words to lowercase; verbal numbers to numeric
values; and separates symbols from numeric values (Figure 4). For example, part of the problem
statement "If $10,000 is invested at 6% interest compounded annually" becomes "if $10000 is
invest at 6 % interest compound annual". Now, all the elements in the problem statement are
known to the system.

The problem statement is divided into several blocks in order to distribute the complexity of the
problem (Figure 5). Each block is a knowledge unit that contains a domain variable and a numeric
value. The knowledge unit contains necessary as well as unnecessary information for interpreting
the problem statement. Any unnecessary word such as 'at' must be removed before reasoning,
because they only required overhead on the system during the process of reasoning. As an
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Figure 2. problem solving process

How much money will you have accumulated three years from now if
$10,000 is invested at 6% interest compounded annually?

Figure 3. A sample problem in engineering economics

Plural to singular:

past tense to present tense:

years => year
invested => invest

compounded => compound
accumulated -> accumulate

How => howUpper case to lower case:
verbal number to numeric number: three => 3

remove comma within a number: 10,000 => 10000

separate symbol from number: $10000 => $ 10000
6% => 6 %

Figure 4. Conversion process
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Block (Knowledlje unit) .....
1. how much money will you have accumulate
2. three year from now
3. if$10,000 is invest if, is

4. at 6% interest compound annuall), at

Figure 5.

Unnecessary word
you have

Removing unnecessary words from each knowledge unit

Knowledse unit Interpretation
1. how much money will ... accumulate Find F
2. 3 year from now N = 3
3 .... $10000 ... invest P = 10000

4 .... 6 % interest compound annual i = 6%

Figure 6. Knowledge Units of the Sample Problem

at 6 % interest compound annually

1. interest rate 1. interest (amount)
2. interest rate

1. interest rate

2. interest

3. annual amount

Figure 7. Domain Thesaurus Interpretation Example

Given P, i, N, and Find F. [Solution strategy is F - P ( F / P, i%, N)) I
Figure 8. Finding a Solution Strategy

instance, a block "if $10000 is invest" will be interpreted as a present worth "P = $10000" because
'if' and 'is' are unnecessary, 'invest' is used previously as present worth, and '$10000' is a value
of the variable. Unnecessary words can be found in all problems in the domain, but not in the list
of domain templates. A domain template is a sequence of words, a knowledge unit, that is used to
interpret a domain variable. The unnecessary word is not used uniquely: it could be found in the
templates for all different variables.

The Problem Solver interprets each knowledge unit by applying the domain thesaurus and domain
template dictionary. For example, when a text block, 'at 6% interest compound annual' is given to
the system, the knowledge base provides interpretation of the block: 1) word by word: The word
'at' is an unnecessary word for solving the problem. Next word, '%', will be interpreted as
'interest rate.' and 'compound' as 'interest rate.' The word 'interest' has two meanings: 'interest'
(amount of money) and 'interest rate' (rate). The last word 'annual' could be represented in three
different variables: 'interest,' 'interest rate,' and 'annual value' (Figure 7). 2) as a template
'interest compound annual' meaning 'interest rate.' Such conflicts will be resolved by selecting an
interpretation with the highest priority among all different possibilities. The knowledge base

provides the necessary knowledge to determine which one has higher priority.
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TheProblemSolversendstheinterpretationof theproblemstatementto the domain theory
selector. The interpretation of the problem (for example, P = $10000, i = 6%, N = 3 year, and F

is unknown) is used to select an appropriate solution method (F = P ( F/P, i%, N)) (Figure 8).

The system applies the interpretation of the problem to the solution method

(F = 10000 ( F / P, 6%, 3)). The solution found is presented to the user through the User

Interface.

CONCLUSION

The Translator and the Problem Solver in the 13 system have demonstrated that the knowledge

based interpretation of natural language is feasible. Modular design of the Problem Solver
provides the system's expandability and reusability. Expanded problem solving capability of the
system can be accomplished by adding more knowledge to the Domain Glossary. Reusability can
be enhanced by replacing or adding managers to the Problem Solver without reprogramming other

parts of the system. Combining rule based processing with objects (or an integration of object
oriented system with an intelligent system) makes it possible to define domain knowledge about the

application further than with rules alone.

The 13 system is being developed on an IBM compatible 486 machine using the C/C++
programming language (Microsoft Visual C++) and CLIPS 6 (C Language Integrated Production
System, by NASA Lyndon B. Johnson Space Center, a forward chaining expert system shell
based on the Rete algorithm).
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ABSTRACT

At the last CLIPS conference, we discussed our ideas for adding a temporal dimension to the Rete
network used to implement CLIPS. The resulting historical Rete network could then b¢ used to store
'historical' information about a run of a CLIPS program, to aid in debugging. MIRO, a debugging
tool for CLIPS built on top of CLIPS, incorporates such a historical Rete network and uses it to

support its prototype question-answering capability. By enabling CLIPS users to directly ask
debugging-related questions about the history of a program run, we hope to reduce the amount of
single-stepping and program trueing required to debug a CLIPS program. Ia this paper, we briefly
describe MIRO's architecture and implementation, and the curre)at question-types that MIRO
supports. These question-types are further illustrated using an example, and the benefits of the
debugging tool are discussed. We also present empirical results that measure the run-ti, me and partial
storage overhead of MIRO, and discuss how MIRO may also be used to study various efficiency
aspects of CLIPS programs.

I. INTRODUCTION

In debugging programs written in a forward-chaining, data-driven language such as CLIPS,
programmers often have need for certain historical details from a program run: for example, when a

rticular rule fired, or when particular fact in working memory. In a paper presented at the last
C_LIPS conference [41, _ . waswe proposed modifying the Rote network, used for determining which rules
are eligible to fire at a given time, within CLIPS, to retain such historical information. The

information thus saved using this historical Rete network would be used to support a debugging-
oriented question-answering system_

Since the presentation of that paper, we have implemented historical Rete and a prototype question-
answering system within MIRO, a debugging tool for CLIPS built on top of CLIP8. MIRO's question-
answering system can make it much less tedious to obtain historical details of a CLIPS program run
as compared to such current practices as rerunning the program one step at a time, or studying traces
of the program. In addition, it turns out that MIRO may also make it easier to analyze certain
efficiency-related aspects of CLIPS program runs: for example, one can much more easily determine
the number of matches that occurred for a particular left-hand-side condition in a rule, or even the
number of matches for a subset of left-hand-side conditions (those involved in beta memories within
the Rete network).

The rest of the paper is organized as follows. Section two briefly describes MIRO's architecture and
implementation. Section three then gives the currently-supported question-types, and illustrafes how
some of those question-types can be used to help with debugging. Empirical results regarding
MIRO's run-time and partial storage overhead costs are given in section four, and section five
discusses some ideas for how MIRO might be used to study various efficiency aspects of CLIPS
programs. Finally, section six concludes the paper.

2. MIRO'S ARCHITECTURE AND IMPLEMENTATION

To improve CLIPS' debugging environment, MIRO adds to CLIPS a question-answering system able
to answer questions about the current CLIPS program run. We used CLIPS 5.0 as MIRO's basis.
Figure 1 depicts the architecture of MIRO. Because questions useful for debugging will often refer to
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historicaldetailsof a programrun, MtRO extends the CLIPS 5.0 inference engine to maintain
historical information about the facts and instantiations stored in the working memory, and about the
changes to the agenda. Moreover, in order to answer question-types we provided query-operators
that facilitate answering questions concerning past facts and rule-instantiations, and an agenda
reconstruction algorithm that reconstructs conflict-resolution information from a particular point of
time.

MIRO

MIRO Inference Engine
!

I CLIPS 5OInference Engine

I Hi'dry oftheProgram Run

I Agenda-Changes ILogs I

I MIRO User Interface I(Question Processing)

Agenda Reconstruction

Query Operators

forProgram History

Figure l - The MIRO Debugging Environment

One could describe MIRO as a tool for helping programmers to analyze a program run; it assists
them by making the acquisition of needed low-level details as simple as asking a question. Where,
before, they gathered olues that might suggest to them a fault's immediate cause by searching traces
and single-stepping through a i_rogram run, now they can simply ask questions to gather such clues.
The programmers still direct the debugging process, but the question-answering system helps them to
determine the next step in that process. By allowing programmers to spend less time single-stepping
through program runs and searching traces for historical details, this question-answering system can
let programmers save their attention and energy for the highdevel aspects and intuition needed in
debugging.

As already mentioned, CLIPS 5.0,forms the basis of MIRO: the CLIPS 5.0 source code was modified
and augmented to implement MIRO. To quickly obtain an operational prototype, we used existing
code whenever possible, and we patterned the historical Rete and agenda reconstruction additions
after those used for regular Rete within CLIPS. This software reuse included replicating the code for
existing data structures when creating new data structures, augmenting existing data structures, calling
existing functions from new functions whenever possible, and modifying existing functions when
their functionality was almost, but not quite, what was needed.

So, when implementing, for example, historical Pete's past partitions, the past partitions were patterned
after the current (formerly only) partitions. The data structures for facts, instantiations, and rule
instamiations were all augmented with time-tags, and rule instantiations were also augmented with a
fired flag, set if that rule instantiation was actually fired. We added analogous functions to those used
for maintaining the current working memory for maintaining the past working memory, and so on.
This approach reduced programming overhead, and, because CLIPS 5.0 was already quite efficient,
the added historical components were also quite efficient.

We also added code to measure various run-time characteristics, such as the number of current and
past facts, rule instantiations, and Rete memory instantiations, to better compare program runs under
regular CLIPS and MIRO, as shown at the end of section four.

The bulk of MIRO was implemented over the course of a single year, by a single programmer;
however, other research-related activities were being done concurrently with this development. It
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probablytook about seven programmer-months to bring MIRO to the point where it had 19
question-types. Note, however, that this does not take into account the time spent designing the
historical Rete and agenda reconstruction algorithms.

The version of CLIPS 5.0 that we developed MIRO from, and that we used for comparisons with
MIRO, contained 80497 lines of code and comments; this includes the source code files, include files,
and the UNIX make file. The same files for MIRO contained 86099 lines, also including comments;
so, we added about 5600 additional lines of code and comments, making MIRO about 7% larger than
CLIPS 5.0.

3. MIRO'S QUESTION TYPES

Adding the question-answering system itself to MIRO was as easy as adding a new user-defined
function to the top-level of CLIPS; We constructed a CLIPS top-level function called askquestion. The
difficult part was determining the form that this question-answering would take. Our primary goals of
constructing a prototype both to demonstrate the feasibility of, and to illustrate how, the information
from the historical Pete network and other history-feinted structures could be used to answer
programmers' debugging-related questions had a strong impact on the design that we decided to use.

We assume that the kinds of questions that can be asked are limited to instances of a set of fixed
question-types; each question-type can be thought of as a template for a particular kind of question.
"this allow§the question.answering system to have a modular design: each question-type has an
elgorithm for answering an instance of that type. This also allows additional questi0n-types to be
easily added, and to be tested as they are added, as it is discovered which are desirable for debugging.

The design of the interface for getting programmers' questions to the explanation system is a worthy
research topic all by itself; to allow us to concentrate more on answering the questions, we use a very
simple interface, with the understanding that future work could include replacing this simple interface
with. a more sophisticated front-end. Since we are more interested in designing a tool for debugging
and less interested in natural language processing, the question-answering system uses a template-like
_tpproach for the various question-_pes that the programmers will be able to ask. That is, each
question-type has a specific format, with specific "'blanks" which, filled in, result in an instance of that
question-type. Furthermore, to avoid requiring the programmers to memorize these question-type
formats, we use a menu-based approach: when the programmers enter the command (askquestion), a
list of currently-supported question-types is printed on-screen. They then enter the number of the
desired question-type, and the explanation system queries them to fill in that question-type's
necessary blanks.

Imglementing this approach was quite straightforward, because regular CLIPS already has some tools
for obtaining top-level command arguments. We only had to modify them a little to allow for the
optional askquestion arguments. A main askquestion function prints the mgnu if no arguments are
given, and then asks which quest/on-type is desired; a case statement then uses either that result or the
first askquestion argument to call the appropriate question-answering function, which is in charge of
seeing ifargnments for its needed values have already been given, or must be asked for. After each
particular question-type's question-answering function obtains or verifies its needed values, it then
tries to answer the question, and print the result for the programmer.

We currently support 19 question-types, as shown in Figure 2. However, question 9, why a particular
rule did not fire, currently only tells if that rule was eligible or not at the specified time.

I. What fact oorresponds to fact-id <num>?

2. When did rule <name> fire?

3. What rule fired at time <nm_>?

4. What facts were in meBory at time <n_>?

5. How many current facts are in mm_ory now?

6. How many past facts are in memory now?

7. How many current rule activations are o_ the agenda now?

8. How many past rule activations are in memory now?
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9. Why did rule <name> not fire at time <num>?

10. How many current alpha instantiations are in memory now?

11. Row many past alpha instantiaticms are in memory now?

12. How many current beta instantlations are in _mory now?

13. How many past beta instantiatlons are in memory now?

14. What are the Rete memory _?

15. What were the agenda changes from time <nuD> to time <num>?

16. How many current not-node instantiations are in mmmory now?

17. How many pas_ not-node inatantiatioms are in mmmory now?

18. What was the agehda at the end of time <nmn>?

19. Bow many agenda changes were there from time <hUm> to time <num>?

Figure 2 - Currently-Suppo.rted Question-Types in MIRO

We will now give some examples of MIRO's question-answering system at work. We will describe
some hypothetical scenarios, to illustrate how MIRO might be useful in debugging; the responses
shown are those that would be given by MIRO in such situations.

Consider a program run in which the program ends prematurely, that is, without printing any output.
One can find out the current time-counter value with a command that we added to MIRO specifically
for this purpose --- if one types (time-counter) after 537 role-firings, it prints out:

time_counter is: 537

The programmers can now ask, if desired, which rules fired at times 537, 536, 535, etc. If they type
(askquestion), the menu of rules will be printed: if they choose question-type number 3, "'What rule
fired at time <hum>?", then it will ask what time-counter value they are interested in; if 537 is entered,
and if _ rule named "'tryit" happened to be the one that fired at that time, then MIRO would print an
answer like:

Rule tryit fired _t time 537

with the following rule activation:

0 tryit: f-30,f-15,f-47 time-tag: (530 *)(activn time-tag: 530 537))

This tells the programmers that rule tryit fired at time 537, and that the particular instantiation of rule
tryit that fired had LHS conditions matched by the facts with fact-identifiers t"-30, f-15, and f-47. This
instantiation of rule tryit has been eligible to fire since time 530 --- before the 531st rule firing ---
but, as shown, the rule instantiation's, or activation's, time-tag is now closed, with the time 537, because
it was fired then, and a rule that is fired is not allowed to fire again with the same fact-identifiers.

Now, if the programmers suspect that this rule-firing did not perform some action that it should have
performed --- to allow another rule to become eligible, for example --- then they can use the regular
CLIpS command "'pprule" to print the rule, so that they can examine its RHS actions. If it should not
have fired at all, then they may wish to see why it was eligible. For example, in this case, they may
Want to know what facts correspond to the fact-identifiers f-30, t"-15, and f-47. One can Io0k at the
entire list of fact-identifiers and corresponding facts using the regular CLIPS (facts) command, but if
the program has very many facts, it can be quite inconvenient to scroll through all of them. So, MIR0
provides the question-type "'What fact corresponds to fact-id <num>?'. On first glance, this question
appears to have no historical aspect at all; however, it does include the time-tag for the instance of the
fact corresponding to this fact-identifier. This can be helpful to the programmers, if they suspect that
one of the facts should not have been in working memory -- then, the opening time of that fact's
time4ag-can be used to see what rule fired at that time, probably resulting in this fact's adqition. Since
this question-type is the first in the list, and requires as its only additional information the number of
the fact identifier whose fact is desired, typing (askquestion 1 47) will ask the first question for fact-
identifier f-47, giving an answer such as:

Fact-id 47 is fact:

(p X Y) time-tag: (530 *)

If the programmers suspect that fact f-47, now known to be (p X Y), should not be in working
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memory--- if they think that it is a fault that it exists, and is helping n_le tryit to be able to fire ---
then they can again ask the question-type "'What rule fired at time <hum>?" to see what rule fired at
time 530, when this instance of (p X Y) joined working memory. They can then see if the rule that
fired at time 530 holds the cause of the fault of (p X_Y) being in working memory, and enabling the
faulty firing of tryit at time 537.

4. COMPARISONS BETWEEN MIRO AND CLIPS $.0

As already mentioned, we implemented MIRO by starting with CLIPS 5.0; we then generalized its
Rete inference network [2i into a historical Rete network, added an agenda reconstruction capability,
and added the prototype question-answering capability. Historical Rete and agenda reconstruction are
discussed in more detail in ['5] and [6]. We also made some other modifications, to allow for
experimental measures; for example, we added code to measure various run-time characteristics such
as the number of current and past instantiations, and the number of current and past facts. We then
ran a number of programs under both MIRO and CLIPS 5.0.

The programs that we used range fairly widely in size, and behavior. Four of the programs ---
dilemmal, mab, wordgame, and zebra --- are from CLIPS 5.0's Examples directory. The dilemm_il
program solves the classic problem of getting a farmer, fox, goat, and cabbage across a stream, where
various constraints must be met. The mab program solves a planning problem in which a monkey's
goal is to eat bananas. The wordgame program solves a puzzle in which two six-letter names are
"'added" to get another six-letter name, and the program determines which digits correspond !o the
names' letters. Finally, the zebra program solves one of those puzzles in which five houses, of five
different colors, with five different pets, etc., are to each have their specific attributes determined,
given a set of known information.

The AHOC program was written by graduate students in the University of Houston Department of
Computer Science's graduate level knowl_lge engineering course COSC 6365, taught by Dr. Eick in
Spring 1992. AHOC is a card game with the slightly-different objective that the players seek to win
exactly the number of tricks bid. The pxOgram weaver ([1], [3]) is a VLSI channel and box router;
we obtained a CLIPS version of this program from the University of Texas' OPS5 benchmark suite.
Finally, can_ordering t is a small program that runs a rather long canned beverage warehouse
ordering simulation, also from the Spring 1992 COSC 6366 knowledge engineering class; it was
written by C. K. Mao.

We ran each program three times under MIRO and under CLIPS 5.0, on a Sun 3 running UNIX, with
either no one else logged in, or one other user who was apparently idle. For every run in both CLIPS
and MIRO, we used the (watch statistics) command to check that the same number of rules fired for
each run of the program; for every MIRO run of a program, we also made sure that all runs had the
same number of instantiations at the end of the run. The run-times are given in Table I.

The run-times for programs run using MIRO were usually only .slightly slower than those using
regular CLIPS 5.0; one program, mab, took 11.4% more time in MIRO, but on average, the MIRO
runs only took 4.1% more time. Interestingly enough, AHOC ran, on average, slightly faster under
MIRO than under regular CLIPS. This could be because regular CLIPS 5.0 returns the memory used
for facts and instantiations to available memory as they are removed, which MIRO does not do until a
reset or clear, because such facts and instantiations are instead kept, and moved into the past fact list
or past partitions. The average 4.1% additional time required by MIRO to run a program seems quite
reasonable, especially since the additional time is only required while debugging, and allows
programmers the benefits of the MIRO tool.

Another feature of the (watch statistics) command under regular CLIPS, besides printing the number
of rules fired and the time elapsed, is that it also prints the average and maximum number of facts
and rule instantiations during those rule-firings. We enhanced this command in MIRO so that it also
keeps track of the average and maximum number of past facts and past rule instantiations, as well as
the averages and maximums for different kinds of Rete memory instantiations, both past and current.
To get some idea of the overhead needed to store historical information from a run, we co/npared the
average number of current facts during a run to the average number of past facts, and compared the
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average number of current rule instantiations to the average number of past rule instantiations.

Another feature of the (watch statistics) command under regular CLIPS, besides printing the number
of rules fired end the time elapsed, is that it also prints the average and maximum number of facts
and rule instantiatiohs during those rule-firings. We enhanced this command in MIRO so that it also
keeps track of the average and maximum number of past facts and past rule instantiations, as well as
the averages and maximums for different kinds of Rete memory instantiations, and'bothpast current.
To get some ideaof theoverhead needed tostorehistoricalinformationfrom a run,we compared the
average number of currentfactsduringa run tothe averagenumber of pastfacts,and compared the
average number of currentruleinstantiationsto the average number of past ruleinstantiat/ons.

(Analogouscomparisonsfordifferentkindsof Pete memory instantiations,as wellascomparisons of
the maximum number of currentitemsto the maximum number of pastitems,can be found in [6D.)

Table II shows these averages for facts and rule instantiations. It also gives, where appropriate, how
many times bigger the average number of past items is than the average number of current items.
Compared to the average number of current items during a run, fewer times as many past facts than
past rule instantiations will need to be kept. This suggests that there is more overhead to storing rule
instantiation history than there is to storing fact history.

Table II shows that the space to store past f_cts and rule instantiations, compared to the average s_ace
to store current facts and rule instantiations, can, indeed, be high, especially for long runs. But, long
runs should be expected to have more historical information to record. Also, it should be noted that
in running these programs on a Sun 3, we never ran into any problems with space, even with the
additional historical information being stored. During program development, the storage costs
should be acceptable, since they facilitate debugging-related question-answering. The programmers
can also limit the storage costs by only running their program using MIRO when they might want to
obtain the answers to debugging-related questions; at other times, they can run their program using
regular CLIPS.

$. USING MIRO IN STUDYING CLIPS PROGRAMS

We hope that MIRO's question-answering system can make debugging a CLIPS program easier and
less tedious. Here, we consider another use of MIRO: to analyze certain performance aspects of
CLIPS programs. With a shift of viewpoint, such analysis may be involved in a variant of debugging -
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can_ordering_l 1131 1639i 14.501 10 2795 279.50

-- if, for example, a program takes so long to run that the programmers consider the run-time to be a
problem, then such performance analysis may help in determining how to modify the program so
that it takes less time, Such aspects may also be of interest in and of themselves, both to programmers
and to researchers studying the performance aspects of forward-chamiug programs in general.

Note that a Rete network, historical or regular, encodes a program's rules' LHS conditions; the RHS
conditions of those rules are not represented, except perhaps by pointers from a rule's final beta
memory to its actions, to help the forwaM-chaining system to more conveniently execute the RHS
actions of a fired rule. So, MIRO could be helpful primarily in analyzing the efficiency involved in
the match step of the recognize-act cycle. Being able to locate Rete memories whose updating could
cause performance trouble=spots could be useful for improving the overall performance of a CLIPS
program.

Using MIRO, it is much easier to discover some of the dynamic features of a CLIPS program run,
such as the number of instantiations within the network during a run. One can study worst-ease and
average.case behavior within a CLIPS programrun by looking at the number of average, and
maximum, facts, rule instantiations, and alpha, beta, and not-memory instantiations. For example, a
great,disparity between the average number 0f current beta instantiations, and the maximum number
reached during a run could indieafe volatility in beta memory contents that could have a noticeable
performance impact.

One might consider the total number of changes to a beta memory during a run to be the total
number of additions to and deletions from that memory -- or, the total number of current
instantiations at the end plus two times the number of past instantiations. Averaged over the number
of rule-firings, this would give the number of beta memory changes per rule-firing, which, if high,
might very well correlate with more time needed per rule-firing; and, averaged over the number of
total beta memories, this would give us a rough average of the number of changes per beta memory.
We i:ould even determine a number of workinig memory changFs this way, by adding the number of
current facts to two times the number of past facts, and use this to obtain an average number of fact
changes per rule firing.

Another measure that might be very telling would _be the average number of memory changes per
rule-firing, computed by counting each past instantiation at the end of a run as two memory changes
--- since each was first added to a current instantiation, and then moved to a past partition --- and
each current instantiatioa at the end of a run as a single memory change, and then dividing the sum
by the number of rule-firings. We can also determine the average number of fact changes per rule-
firing similarly. In measurements we made using the seven programs discussed in the previous
section, the most important factor that we found that correlated with performance was that a high
number of instantiation changes per rule-firing did seem to correlate wiUa more time nreded per rule-
firing [6].

Although one can reasonably obtain some of the information mentioned above by using regular
CLIPS, much of it would be very inconvenient to gather using it. For example, determining the
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averageand maximum number of past facts and past rule instantiations would be difficult to obtain
using regular Rete. We modified the existing CLIPS (watch statistics) command in MIRO so that it
also keeps track of this additional information.

Note that historical Rete can also be used to support trouble-shooting tools and question-types, in
addition to supporting question-answering for debugging. For example, any time that the
programmer can specify a particular time of interest, historical Rete searches can be made that focus
only on instantiations in effect at that time.

The discussed examples show the potential that MIRO has as a tool in analyzing CLIPS program
performance, as well as in debugging, Information about what occurred during Rete network
memories can be more reasonably retrieved, making such analysis more practical, across larger
samples of programS. Note, too, that a programmer can choose to look at averages over all of a
program's memories, or for a single memory, or for a particular rule's memories, as desired.

6. CONCLUSIONS

In this paper, we have fgllowed up on our work reported at the last CLIPS conference, describing how
we have implemented historical Rete and question-answering for debugging in MIR 0, a debugging
tool built on top of CLIPS 5.0. We have described MIRO, and have hopefully given a flavor for how
it may be used to make debugging a CLIPS program easier and less tedious, by allowing
programmers to simply ask questions to determine when program events --- such as rule firings, or
fact additions and deletions --- occurred, instead of having to depend on program traces or single-
stepping program runs. We have further described how MIRO might be used to study certain
performance-related aspects of cLIps programs.

The empirical measures included also show that MIRO's costs are not unreasonable. Comparisons of
programs run in both MIRO and CLIPS 5.0, which MIRO was built from, have been given; on
average, the ran-time for a program under MIRO was only 4.1% slower than a program run under
CLIPS 5.0, when both were run on a Sun 3. Comparing the average number of past facts and rule
instantiations to the average number of current facts and current rule instantiations, there were, on
average, 3.53 times more past facts than current facts, and 72.12 times more past rule instantiations
than current rule instantiations. But this historical information permits the answering of debugging-
related questions about wha't occurred, and when, during an expert system run. We also gave
examples of the kinds of question-types that MIRO can currently answer, as well as examples of the
kinds of answers that it gives. We hope that this research will encourage others to also look into how
question-answering systems can be designed to serve as tools in the development of CLIPS programs.
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ABSTRACT

Since its introduction into the AI community in the early 1980's, the Rete algorithm has
been widely used. This algorithm has formed the basis for many AI tools, including
NASA's CLIPS. One drawback of Rete-based implementations, however, is that the
network structures used internally by the Rete algorithm make it sensitive to the
arrangement of individual patterns within rules. Thus while rules may be more or less
arbitrarily placed within source files, the distribution of individual patterns within these
rules can significantly affect the overall system performance. Some heuristics have been
proposed to optimize pattern placement, however, these suggestions can be conflicting.

This paper describes a systematic effort to measure the effect of pattern distribution on
production system performance. An overview of the Rete algorithm is presented to
provide context. A description of the methods used to explore the pattern ordering
problem area are presented, using internal production system metrics such as the number

of partial matches, and coarse-grained operating system data such as memory usage and
time. The results of this study should be of interest to those developing and optimizing
software for Rete-based production systems.

INTRODUCTION

The Rete algorithm was developed by Charles Forgy at Carnegie Mellon University in
the late 1970's, and is described in detail in [Forgy, 1982]. Rete has been used widely in
the expert system community throughout the 1980's and 1990's, and has formed the basis

for several commercial and R&D expert system tools [Giarratano & Riley, 1989] [ILOG,
1993]. Recent enhancements have been proposed based on parallel processing
[Miranker, 90] and matching enhancements [Lee and Schor, 1992]. Rete provides an
efficient mechanism for solving the problem of matching a group of facts with a group of
rules, a basic problem in a production system.

In this section, an overview of the Rete algorithm is given in order to provide context for
the discussion to follow. This presentation, however, is not intended to be a rigorous
analysis of the Rete algorithm.

Rete based systems assume a working memory that contains a set of facts and a network
of data structures that have been compiled from rule definitions. The rules contain a set

of condition elements (CE's) that form the left-hand-side (LHS), and a right-hand-side
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(RHS) that performs actions. The RHS actions may be side-effect free, such as
performingacomputation,invoking anexternal routine, performing I/O to the input or
output streamsor file. Other actionson the RHS may causechangesin the working
memory, such as insertions, deletions,or modifications of facts. The Rete network
actuallycontainstwo main structures:a patternnetwork,andajoin network. Thepattern
networkfunctionsto identify which factsin working memoryareassociatedwith which
patternsin therules. The join networkis usedto identify which variablesaresimilarly
boundwithin arule acrossCE's.

Within the patternnetwork,elementsof the individual CE's arearrangedalongbranches
of a tree, terminating in a leaf nodethat is called an alpha node. The join network
consistsof groupsof betanodes,eachcontainingtwo nodesasinputsandoneoutputthat
canbefedto subsequentbetanodes.Finally, theoutputof thejoin networkmayindicate
thatoneor morerulesmaybecandidatesfor firing. Suchrulesarecalledactivations,and
constituteinputs to the conflict set,which is a list of available rules that are readyfor
execution. Typically, somearbitrationmechanismis usedto decidewhich rulesof equal
precedencearefired first. When arule fires, it may of courseaddelementsto or delete
elementsfrom the working memory. Such actions will repeat the processingcycle
describedabove,until nomore rulesareavailableto befired.

Considerthe following small set of factsand a rule. For simplicity, additional logical
constructs, such as the TEST, OR, or NOT expressions are not considered, and it is
assumed that all CE's are ANDed together, as is the default. Note that myRulel has no
RHS, as we are focusing only on the LHS elements of the rule.

(deffacts data

(Group - 1 2 3)
(Int 1)
(Int 2)
(Int 3))

(defrule myRulel
(Group ?i ?j ?k)
(Int ?i)
(Int ?j)
(Int ?k)

=>)

This rule can be conceptualized in a Rete network as follows (see Figure 1). There are
two branches in the pattern network, corresponding to the facts that begin with the tokens
"Group" and "Int", respectively. Along the "Group" branch of the tree, there are nodes
for each of the tokens in the fact, terminating with an alpha node that contains the
identifier "f-l" corresponding to the first fact in the deffacts data defined above.

Similarly, along the "Int" branch, there is one node for all the facts that have "Int" as a
first token, and then additional nodes to show the various values for the second token.

Alpha nodes along this branch also contain references to the appropriate facts that they
are associated with, numbered in the diagram as "f-2" through "f-4". Note that the "Int"
branch has shared nodes for structurally similar facts, i.e. there is only on "Int" node even

though there are three facts with "Int" as a first token.

On the join network, myRulel has three joins to consider. The first CE of myRulel
requires a fact consisting of a first token equal to the constant "Group" followed by three
additional tokens. The alpha node of the "Group" branch of the pattern network supplies
one such fact, f- 1. The second CE of myRule I requires a fact consisting of a first token
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equalto the constant"Int" followed by anothertoken,subjectto the constraintthat this
tokenmust be the sameas thesecondtokenof the fact satisfying the first CE. In this
case,the fact f-2 meetsthesecriteria, hencethejoin nodeJ1 hasonepartial activation.
This is becausethereis onesetof factsin theworkingmemorythat satisfyits constraints.
Continuing in this fashion,the outputof J1 is suppliedas input to J2, which requiresa
satisfiedjoin nodeasaleft input anda factof theform "Int" followed by atoken(subject
to theconstraintthatthis tokenmustbeequalto thethird tokenof thefirst CE). Thefact
f-3 meetsthesecriteria, sojoin nodeJ2hasonepartial activationaswell. This process
continuesuntil we finish examiningall CE's in myRulel and determinethat thereare
indeedfactsto satisfytherule. Therule is thenoutputfrom thejoin networkwith theset
of factsthat satisfiedits constraintsand senton to theagenda,where it is queuedup for
execution.

Pattem Network

<i>fI i I
I I

i

I <f-2 
' 0-I)

. I J2 (f.2) I _ /
I (f-3)I _,,h_ r
I I __ (I-1) I

J3 (f-2) I
(f-3) I

(f4)I
Activation: myRulel

Figure 1. Rete Network for myRulel. This diagram depicts the Rete
pattern and join networks for a rule with four CE's.

Consider the same set of data and a rule with the CE's arranged in a different order.
Semantically, myRulel and myRule2 are the same, however, the number of partial
matches generated by myRule2 is much greater than that generated by myRulel.

(defrule myRule2
(Int ?i)
(Int ?j)
(Int ?k)
(Group ?i ?j ?k)

=>)
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With this rule, we have three facts that match the first CE. Examining the first two CE's,

there are three possible facts that can match the second CE, hence there are nine possible
ways to satisfy the first two CE's. Moving to the third CE, there are again three ways to

satisfy the third CE, but each of these must be considered with the nine possibilities that
preceded it, hence there are 27 possible ways to satisfy the first three CE's. Fortunately,
the fourth CE is satisfied by only one fact, so the number of partial activations for CE's
one through four is only one; it is the fact that matches the fourth CE (f-l), coupled with
exactly one set of the 27 possibilities available for CE's one through three. Summarizing,
there are 40 partial activations for this rule (3 + 9 + 27 + 1).

From the above discussion, we have seen that pattern ordering in the LHS of rules can
have significant impact on performance. Unfortunately, there are a large number of
possible orderings one can try in even a small rule. Since in general, in a rule with N
CE's, there are N ways to place the first CE, N- 1 ways to place the second CE, and so on,
the number of possible pattern arrangements is given by N!. As there may be many rules
in an expert system, each with a large number of possible CE orderings, it should be clear
that it is prohibitively expensive to do an exhaustive search of all possible arrangements
of all rules in an attempt to optimize performance.

There may be some reduction in the number of arrangements if one considers that from

the pattern network point of view, some arrangements produce an equal number of partial
activations and thus can be considered together for analysis purposes. For example, the
rule aRule 1

(defrule aRule 1
(Group ?i ?j)
(Int ?i)
(Int ?j)

=> )

has the same number of partial activations as aRule2,

(defrule aRule2
(Group ?i ?j)
(Int ?j)
(Int ?i)

=> )

because the CE's in slots 2 and 3 are similar with respect to effect on the join network.

So even though there are 6 possible arrangements of CE's in this rule, only 3 actually
produce different numbers of partial activations in the join network. This property is
used extensively in the Analysis section that follows, as it allows valid results to be
obtained using a manageable subset of the possible pattern orderings.

ANALYSIS AND RESULTS

In an effort to better understand the effects of pattern ordering on production system

performance, a series of tests were conducted. This section describes the various
experiments and the results obtained.
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Partial Activations

From the discussion above, it is evident that some CE orderings are considerably more
efficient than others with respect to partial activations. A test suite was developed using a
rule with N CE's and a data set of N facts, where N-1 CE's are syntactically similar and
one CE joins across the remaining N-1 CE's. This is the configuration used in the
example myRulel and myRule2 above; note that in that case N=4 because there are four
CE's.

To interpret the data in the following table, match the number of CE's in the rule LHS
(identified by the row labeled N = <n>) with the position of the constraining fact (the fact
that has elements to match all other CE's in the rule). For the example myRulel cited
above, the row "N=4" is matched with "Fact Pos 1", giving 4 partial activations.
Similarly, the example myRule2 cited above has a constraining fact in position 4, hence
for N=4, the number of partial activations is 40. The following table shows the results of
the number of partial activations for rules with the number of CE's varying from N=2 to
N=8.

i

Fact
Pos 1

N=3

N=4

N=5
N=6

N=7

N=8

Fact
Pos 2

Fact
Pos 3

N=2 2 2

3_ 4 7

64_ 14

Fact
Pos 4

40

Fact
Pos 5

Fact
Pos 6

Fact

Pos 7

5 8 23 86 341

6 10 34 158 782 3906

7 12 262 1557 9332 55987
14 2804

47
62 19610404 137258

Fact
Pos 8

960800

Table 1. Partial Activations in Rule Sets. This table shows the increase in
partial activations observed in rules with various numbers of CE's, where

a constraining fact is located at the position indicated by the column
heading.

From this, at least two observations may be made. First, it is clear that the number of

partial activations grows very rapidly. For this example set of rules and data, the number
of partial activations for a rule with N CE's is given by

N-I

(N-l) i
i--O

(1.o)

With such growth, on small computer systems, this may result in unexpected termination
of a program, and even on large systems, performance may be degraded as the system
attempts to accommodate the memory demands through paging or swapping. The second
observation is the smaller the number of CE's on the LHS, the smaller the upper limit on
partial activations. This suggests that a system with a larger number of smaller rules is
better, at least from the vantage point of partial activations, than a system with a smaller
number of larger rules.

267



Memory Usage

Within the Rete network implementation, data is maintained about partial activations.
This data requires memory allocation, and as expected, the required memory grows in
proportion to the number of partial activations. To examine this, the same suite of rules
used above for partial activation testing was used, however, in this case, calls were made
to the CLIPS internal function (mere-used) in order to calculate the memory required to
store a network. The following table shows the results of these tests.

Fact
Pos 1

N = 2 376

N = 3 548
"'N = 4 596

N = 5 836

N = 6 960

N = 7 1016

N = 8 1292

Fact
Pos 2

Fact
Pos 3

Fact
Pos 4

Fact
Pos 5

Fact
Pos 6

376
560 560

62062O
872 872

960

1912 8008

3228
5o76

1008 181801008
1076 1076 36132

1364 7864 654401364

105652
253832

536008

ii

Fact Pos
7

1746792

4300744

Fact Pos 8

33947716

Table 2. Memory Requirements for Various Rule Sets. This table shows
the increase in memory requirements observed in rules with various
numbers of CE's, where a constraining fact is located at the position
indicated by the column heading. Memory allocation values are in bytes.

As expected, the amount of memory required to represent a rule varies in proportion to
the number of partial activations. The two observations given for partial activations also
hold here: some rule LHS orderings will require much less memory than others, and it is

in general more memory efficient to have more small rules than a few large rules.

Reset Time

After rules and data are read into the system, the network must be updated to reflect the

state required to represent these constructs. Data must be filtered through the network in
order to determine facts are available, and comparisons must be made across CE's to

determine which rules are eligible for firing. In order to investigate the time these
processes take, the same test suite describe above was used, however, in this case, an
operating system call was used to time the execution of the load and reset operations for
the various rules. The "timex" command, available on many systems, gives operating

system statistics about the real time, system time and user time required to execute a
process. The following table shows the results of this test, giving real time in seconds,
for the test suite.
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Fact Fact Fact Fact Fact Fact
Pos1 Pos2 Pos3 Pos4 Pos5 Pos6

N=2 0.1
i i

N=3
0.1
 i.1 °

N=4 0.1 0. 0.1

N=5 0.1 0. 0.1 0.11

N=6 0.1 0.1 0.11 0.11 0.17
N=7 0.1 0. 0.11 0.12 0.25i

N=8 0'_'11 0. 0.11 0.15 0.45_

1 0.1

1 0.1

1 0.1

1 0.11
1 0.13

1 0.11

Fact Fact
Pos 7 Pos 8

0.96

2.51 17.88

Table 3. Reset Time for Rule Sets. This table shows the increase in reset

time observed in rules with various numbers of CE's, where a constraining
fact is located at the position indicated by the column heading.

As the reset times do not grow as rapidly as N increases, these results suggest that reset
time is not as great a consideration as memory or number of partial activations. Also the
granularity of timex is only 1/100 of a second, making more precise measurements
difficult.

Placement of Volatile Facts

One heuristic that has been proposed concerns the placement of volatile facts in a rule. In
data sets where a particular type of pattern is frequently asserted or retracted (or modified
if the tool supports this), it is best to put these patterns at the bottom of the LHS of the

rule. A typical example is a control fact containing constants, typically used to govern
processing phases. The justification given is that because Rete attempts to maintain the
state of the system across processing cycles, by placing the volatile fact at the bottom of
the LHS, Rete does not need to check most of the rest of the network and can realize

some performance gain. To test this, the following scenario was usedl The data set
consisted of a set of facts of the form

(Int val <n> isPrime Yes)

where <n> contained a prime number in the range 1 <= n <= 1000. A volatile counter
fact of the form

(Counter <n>)

was used, where n again ranged from 1 <= n <= 1000. This fact was asserted and
retracted for each value of n in the range. The rules to test whether or not n was prime
were

(defrule

-->

isPrime

(Int val ?n isPrime Yes)
?x <- (Counter ?n)

(retract ?x)

(assert (Counter =(+ ?n 1))
(printout t ?n "is a prime "crlf))
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(defrule

=>

notPrime

(Int val ?n isPrime Yes)
?x <- (Counter ?ctrVal&:(!= ?n ?ctrVal))

(retract ?x)
(assert (Counter =(+ ?ctrVal 1))

(printout t ?ctrVal "is not a prime" crlf))

The results below indicate run times in seconds for systems that searched for primes up to

size K. The column 100, for example, indicates that primes between 1 and 100 were
sought by using the volatile fact (Counter <n>) 100 times.

The example rules isPrime and notPrime given above correspond the rules used for the
"'volatile fact at bottom" row of the table. The "volatile fact at top" rules are virtually the

same, except that the (Counter <n>) fact appears as the first CE instead of the second as
illustrated above.

volatile fact

at top
volatile fact

at bottom

100 250 500

1.67 4.74 8.17

1.39 .... 3.92 8.b6

750 1000

15.01 20.31

.... 12.19 16'.43

Table 4. Run Times for Rules with Volatile Facts. This table shows the

differences in run times observed in rules with volatile facts placed at the

top or bottom of the LHS. Times are in seconds.

This example shows that placing volatile facts at the bottom of a rule improves runtime
performance, even for a small rule set and small amounts of data. The improvement is
more obvious as the problem size grows, as the observed difference for K=100 is slight,
whereas the difference for K=1000 is almost 4 seconds.

Placement of Uncommon Facts

Another heuristic suggests that facts that are relatively, rare in the system should be placed
first on the LHS. To test this, the following scenario was used. A data set contained
three classes of facts: sensor facts, unit facts, and controller facts. These facts were

distributed in the system in various proportions. Two rules were compared, one

organized so that its CE's matched the distribution of the facts, and the other exactly
opposite. In the following rules, rareFirst is tailored to perform well when the number of
Ctrl facts is less than the number of Unit facts and the number of Unit facts is less than

the number of Sensor facts. Conversely, rareLast is not expected to perform as well

under this arrangement of data.

(defrule rareFirst
(Ctrl Id ?cid Status ?cStat)
(Unit Id ?uid Ctrl ?cid Status ?ustat
(Sensor Id ?sid Unit ?uid Value ?sVal)

=>)

Value ?uVal)

270



(defrule rareLast
(Sensor Id ?sid Unit ?uid Value ?sVal)
(Unit Id ?uid Ctrl ?cid Status?ustat
(Ctrl Id ?cid Status?cStat)

=>)

Value?uVal)

The following table showsthe numberof partial activationsgeneratedfor theserules
givenvariousdistributionsof matchingCtrl, Unit, andSensorfacts. Thenomenclature
i:j:k indicatesthattherewerei Ctrl facts,j Unit facts,andk Sensorfacts.

rarestfactat
top

rarest factat
bottom

Ctrl:Unit:
Sensor
3:10:20

33

Ctrl:Unit:
Sensor
5:20:50

75

Ctrl:Unit:
Sensor

10:50:100

160

Ctrl:Unit:
Sensor

25:125:500

650

Ctrl:Unit:
Sensor

50:200:1000

1250

60 150 300 1500 3000

Table 5. Partial Activations for Rules with Rare Facts. This table shows

the differences in partial activations observed in rules with patterns that
match rarest facts at the top or bottom of the LHS.

This test shows that placing less common facts at the top of the LHS reduces the number
of partial activations for the rule. Another point is worthy of mention here: had the
distribution of facts been different, rareLast might have outperformed rareFirst rule. This
points out a potential problem, as attempting to optimize a system based on one set of

data may not have optimal results on other sets of data. Given that expert systems are
typically much more data driven than other forms of software, this kind of optimization
may not be effective if the data sets vary widely.

CONCLUSIONS

This paper has described a number of tests performed to investigate the effects of pattern
ordering on production system performance. The results have borne out widely held
heuristics regarding pattern placement on the LHS of rules. The results have quantified
various aspects of the problem of partial activation growth by measuring the number of
partial activations, memory requirements, system reset and run time for a variety of
pattern configurations.

In general, the conclusions that can be drawn are as follows. Partial activations can vary
exponentially as a result of pattern ordering. This suggests that (1) rules should be
written with some regard to minimizing partial activations, and (2) systems should use
larger numbers of small rules rather than smaller numbers of large rules. The second
suggestion helps to reduce the risk of having potentially large numbers of partial
activations. The growth of partial activations as a result of pattern ordering affects
memory requirements, and, to a lesser extent, reset time. As the number of partial
activations increases, the memory required and the reset time also increase.

Placing patterns that match volatile facts at the bottom of a rule LHS improves run-time
performance. Placing patterns that match the least common facts in a system at the top of
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a rule LHS reduces the number of partial activations observed. It may be difficult to use
these methods in practice, however, since both of them depend on knowing the frequency
with which certain facts appear in the system. In some cases, this may be readily
apparent, but in other cases, especially where the form of the data may vary widely, these
may not be practical. Long term statistical analysis of the system performance may be

required to make use of these optimizations.
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ABSTRACT

An evaluation of a prototyped user interface is best supported by a simulation of the system. A
simulation allows for dynamic evaluation of the interface rather than just a static evaluation of the
screen's appearance. This allows potential users to evaluate both the look (in terms of the screen

layout, color, objects, etc.) and feel (in terms of operations and actions which need to be per-
formed) of a system's interface. Because of the need to provide dynamic evaluation of an interface,
there must be support for producing active simulations. The high-fidelity training simulators are
normally delivered too late to be effectively used in prototyping the displays. Therefore, it is im-
portant to build a low fidelity simulator, so that the iterative cycle of refining the human computer
interface based upon a user's interactions can proceed early in software development.

INTRODUCTION

The Crew Systems Engineering Branch of the Mission Operations Laboratory of NASA Marshall
Space Flight Center was interested in a dynamic Human Computer Interface Prototyping Envi-
ronment for the International Space Station Alpha's on-board payload displays. On the Space
Station, new payloads will be added to the on-board complement of payloads in ninety day
increments. Although a payload starts its development and integration processes from two to four
years before launch, a set of new payloads' displays are due every ninety days. Thus, this drives

the need for an efficient and effective prototyping process. The functional components of a dy-
namic prototyping environment in which the process of rapid prototyping can be carried out have
been investigated.

Most Graphical User Interface toolkits allow designers to develop graphical displays with little or
no programming, however in order to provide dynamic simulation of an interface more effort is
required. Most tools provide an Application Programmer's Interface (API) which allows the de-

signer to write callback routines to interface with databases, library calls, processes, and
equipment. These callbacks can also be used to interface with a simulator for purposes of
evaluation. However, utilizing these features assumes programming language knowledge and
some knowledge of networking. Interface designers may not have this level of expertise and
therefore need to be provided with a friendlier method of producing simulations to drive the
interface.

This research is supported in pan by the Mission Operations Laboratory, NASA, Marshall Space Right
Center, MSFC, AL 35812 under Contract NAS8-39131, Delivery Order No. 25. The views and conclu-

sions contained in this document are those of the authors and should not be interpreted as representing the
official policies, either expressly or implied, of NASA.
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A rapid prototyping environment has been developed which allows for rapid prototyping and
evaluation of graphical displays [2]. The components of this environment include: a graphical user
interface development toolkit, a simulator tool, a dynamic interface between the interface and the

simulator, and an embedded evaluation tool. The purpose of this environment is to support the
process of rapid prototyping, so it is important that the tools included within the environment
provide the needed functionality, but also be easy to use.

This paper describes two options for simulation within the dynamic prototyping environment:
petri nets and rule-based simulation. The petri net system, PERCNET [3], is designed to be used
as a knowledge-based graphical simulation environment for modeling and analyzing human-
machine tasks. With PERCNET, task models (i.e., simulations) are developed using modified petri
nets. The rule based system is a CLIPS [1] based system with an X windows interface for running
the simulations. CLIPS executes in a non-procedural fashion making it ideal for representing ran-
dom and concurrent events required by the simulation. Its C language-based design allows

external communication to be programmed directly into the model. In order to compare the two
approaches for simulation, a prototype of a user interface has been developed within the dynamic
prototyping environment with both simulation architectures. This paper compares the two systems
based upon usability, functionality, and performance.

ARCHITECTURE OF THE DYNAMIC PROTOTYPING ENVIRONMENT

There are four components of the Human Computer Interface (HCI) Prototyping Environment: (1)
a Graphical User Interface (GUI) development tool, (2) a simulator development tool, (3) a dy-
namic, interactive interface between the GUI and the simulator, (4) an embedded evaluation tool.

The GUI tool allows the designer to dynamically develop graphical displays through direct
manipulation. The simulator development tool allows the functionality of the system to be im-
plemented and will act as the driver for the displays. The dynamic, interactive interface will
handle communication between the GUI runtime environment and the simulation environment.

The embedded evaluation tool will collect data while the user is interacting with the system and
will evaluate the adequacy of an interface based on a user's performance. The architecture of the
environment is shown in figure 1.

r--

+

+
User Graphical

Interface
Server

Embedded
Evaluation

Simulator

T
Environment

(Simulation
Director)

Figure 1 - HCI Prototyping Environment Architecture
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Interface Development Tool

The Graphical User Interface (GUI) tool for the prototyping environment will allow the designer
to create the display through direct manipulation. This includes the creation of static and dynamic
objects, windows, menus, and boxes. The tool also allows objects created to be linked to a data
source. During execution, the interface objects send and receive data and commands to the simu-
lator by way of the data server. The user interface objects and their associated data access

description are defined independent of the actual source of data. This first allows the development
of the interface and the simulator to occur concurrently. Second, an interface developed with the
GUI tool can later be connected to a high fidelity simulator and then to the actual flight software.

Simulator Development Tool

The simulator development tool provides the capability to develop a low fidelity simulation of a
system or process. The development of a simulation has two important functions. First, the sim-
ulation helps the designer identify and define basic system requirements. Second, potential users
can evaluate both the look (in terms of the screen layout, color, objects, etc.) and feel ( in terms of
operations and actions which need to be performed) of a system. The simulator provides realistic
feedback to the interface based on user inputs.

Dynamic, Interactive Interface

This interface will handle communication between the GUI prototyping tool and the simulation

tool during execution. The interface is a server which has been developed using the GUI's Appli-
cation Programmer's Interface. Messages and commands can be sent and received both ways
between the GUI and the simulator. The server also services requests from the embedded evalu-
ation process, providing information as to which actions the user has taken and which events and
activities have fired.

Embedded Evaluation Tool

An important aspect of the prototyping process is the ability to evaluate the adequacy of the de-
veloped graphical user interfaces. The embedded evaluation tool communicates with the server to

receive information on the interaction between the user and the system. The types of data col-
lected include user actions, simulator events and activities, and the times associated with these

items. The collected data is analyzed to determine task correctness, task completion times, error
counts, and user response times. The data is then analyzed to provide feedback as to which fea-

tures of the interface the user had problems with and therefore need to be redesigned.

An Example: The Automobile Prototype

In order to assess the architecture described above a system was chosen to be prototyped in the
environment. The system chosen for empirical evaluation of the HCI prototyping environment
was an automobile. An automobile has sufficient complexity and subsystems' interdependencies
to provide a moderate level of operational workload. Further, potential subjects in the empirical
studies would have a working understanding of an automobile's functionality, thus minimizing
pre-experiment training requirements.

An automobile can be considered a system with many interacting components that perform a task.
The driver (or user) monitors and controls the automobile's performance using pedals, levers,
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gauges,and a steering wheel. The dashboard and controls are the user interface and the engine is
the main part of the system. Mapping the automobile system to the simulation architecture calls
for a model of the dashboard and driver controls and a separate model of the engine. Figure 2
demonstrates how an automobile system could be mapped into the architecture described. The

main component of the automobile is the engine which responds to inputs from the driver (e.g. the
driver shifts gears or presses the accelerator pedal) and factors in the effects of the environment
(e.g. climbing a hill causes a decrease in the speed of the car). The driver changes inputs to obtain
desired performance results. If the car slows down climbing a hill, pressing the accelerator closer
to the floorboard will counteract the effects of the hill.
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Figure 2 - Automobile Prototype

The dashboard and controls have been modeled using Sammi [5], a graphical user interface de-

velopment tool developed by Kinesix. Two options have been investigated for simulation: petri
nets and rules. Pewi nets provide a graphical model of concurrent systems. The petri net system
which has been used is PERCNET [3], developed by Perceptronics. PERCNET is designed to be

used as a knowledge-based graphical simulation environment for modeling and analyzing human-
machine tasks. With PERCNET, task models are developed using modified petri nets, a combi-

nation of petri nets, frames, and rules. The rule based system which has been used is CLIPS [1], a
rule based language primarily used for the design of expert systems, developed by NASA. CLIPS
executes in a non-procedural fashion making it ideal for representing random and concurrent
events. The automobile system has been prototyped using both the petri net and rule-based systems
as simulators and comparisons have been made based upon functionality, usability, and

performance.

SIMULATION IN THE DYNAMIC PROTOTYPING ENVIRONMENT

Because of the need to provide dynamic evaluation of an interface rather than just static evalua-
tion, there must be support provided for producing active simulation. Most GUIs, including
Sammi, provide some sort of Application Programmer's Interface (API) which allow the devel-

oper to write call back routines which interface with databases, library calls, other processes and
equipment. We would like to provide a means of building a low fidelity simulation of the system
to drive the interface which requires little programming.
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Basic simulation requirements include the ability to model events and activities, both sequentially
and concurrently. The system should provide the ability to create submodels within the main

model. The simulator clock must be linked to the system clock, and support should be provided
for the creation of temporal events. The process must be able to Communicate with UNIX pro-
cesses using the TCP/IP protocol. Real-time communication must also be provided to allow the
tool to communicate with the GUI tool on a separate platform via Ethemet. The ability for two-
way asynchronous communication between the runtime versions of the interface and the simulator

must be provided. The simulator must be capable of receiving data from the GUI tool to dynam-
ically control temporal events, to modify the values of variables, and trigger events and activities.

The ability to specify and send commands, data, and alarms to the GUI tool must also be provided.
A simulator director should be able to send commands (e.g., start simulation, trigger scenario
event, etc.) to the simulator from a monitoring station. An interface should be provided in order to
bind interface objects to simulation objects in order to set the values of variables, trigger events or
activities, and set temporal variables.

Simulation Using Petri Nets

PERCNET is a very powerful system analysis software package designed by Perceptronics, Inc. It
provides an easy-to-use, graphical interface which allows users to quickly lay out a petri net model
of the system. PERCNET uses "modified" petri nets, which allow each state to describe pre-
conditions for state transitions, modify global variables, perform function calls and maintain a
global simulation time.

Pictorially, Petri nets show systems of activities and events. Ovals represent activities which de-
scribe actions performed by the system. Activities are joined by events, represented by vertical
bars, that occur during execution. Events are associated with user actions and environmental

conditions. Execution is shown by tokens propagating through the system. Flow of control passes
from activities to events. Before an event can fire all incoming arcs must have tokens. When this
occurs, the event places tokens on all outgoing arcs passing control to activities. The behavior that
an event exhibits during execution is dependant on the data contained in its frame. Frames record

data related to each activity and event. Event frames may contain rules and functions. Activity
frames allow the designer to specify a time to be associated with each activity. Figure 3 shows the
top-level petri net of the automobile simulator.

Start

distributor

:o O.
sparkplugs

End

Figure 3 - Top-Level Petri Net of the Automobile Simulator
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The starter is the component that is activated by the turning of the key. Before the starter can begin
working, however, the key should be turned on, the driver must be wearing his/her seat belt, the
car must be in neutral and the battery must have a sufficient charge to start the starter. When all
three pre-conditions are true, the starter is activated and control advances to the right in the Petfi
net. Once the starter has been activated, it must do its part to start the automobile. The starter
allows electricity to flow into the distributor where it is channeled into the spark plugs. As long as
the starter is functioning, the distributor and spark plugs are activated. Finally, as long as the spark

plugs and distributor are working properly and there is gasoline, the spark from the spark plugs
ignites the gasoline mixture in the engine and ignition is achieved. Now that ignition has been
accomplished, the engine is running. The concentric circles representing the engine_running ac-
tivity in Figure 3 indicate that the state is shown in a sub-net.

The petri net representing the automobile passes from the ignition portion to the engine running
state and remains in the running state until some condition causes the engine to stop running. The

engine will stop running if the engine runs out of gas, runs out of oil, the temperature rises above
a certain threshold, the key is turned off, the engine stalls (when the automobile is in some gear and
the rpms fall below a threshold amount), the battery loses its charge or the fuel pump, oil pump,
spark plugs or alternator fail.

The major components of the engine modeled are: fuel pump, oil pump, water pump, distributor,
spark plugs, starter, battery, alternator, and fan. The condition of these components is modeled
using a boolean variable indicating either that they are functioning or they are not. The boolean
variables are then used as conditions within events occurring during the simulation. Details of the

Petri Net implementation can be found in [2].

Simulation Using Rules

Since CLIPS is rule-based, it is completely non-procedural. Furthermore, it allows programmers

to pick the strategy by which successive rule-firings are chosen. Certain rules may be designated

fired by different priority levels (rules with the highest priority ftre before rules with lower prior-
ity). Other rule-selection strategies govern how rules with equal priority are selected. Events and
activities are represented by the pre- and post-conditions of rules. For example, the rule for acti-
vating the starter is:

(defrule TURN_KEY

?tick <- (clock_tick)

(test (= 1 ?*key*))

->

(test (=

(test (=

(test (>

(test (=

1 ?*seatbelt*))

?*gear* 0))

?*battery* 10.0))

?*state* ?*READY*))

(bind ?*state* ?*STARTER*)

(retract ?tick)

(assert (clock_tick))

(printout t "ACTIVATE STARTER (" ?*time* ")" calf)

(tick_tocks 2)

(assert (updated TRUE))
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In this project, CLIPS has been extended to include communication capabilities [4]. Two sockets

have been provided for reading from and writing to the server. C functions have been developed
to eliminate redundant information from the messages passed to the server. Another improvement
compiled into the CLIPS executable has been a control process that allows a user to start, stop and
quit CLIPS execution through a graphical interface.

The project also demonstrates some programming techniques used in CLIPS to support the
simulation. A g.lobal simulation time should be maintained and a mechanism for keeping simula-
tion execution tame has been demonstrated. Another important feature that makes use of the timer

is the periodic update feature. This ensures that CLIPS execution pauses (i.e., no rules may fire)
every few seconds to send and receive information from the server. When this happens, control
returns to the main routine which initializes communication with the server.

Writing CLIPS programs to take advantage of this strategy requires the incorporation of several
techniques. These techniques include rules, variables, and functions which may be used in sub-

sequent simulation designs. The first choice involves determining which values will be passed to
or received from the server. All global variables (defined using the "defglobal" command) are
passed to the server. No other values are passed. Facts and local variables may be used to store
values which do not need to be passed to the server. It will be shown later how communication has

been further streamlined for efficiency. The most important rule is the clock rule.

The clock rule stays ready at all times, but because the salience (i.e. priority) of the rule is kept low,
it will not block the f'mng of other rules. When execution begins, the current system time is
retrieved and stored. The current simulation time is always known by retrieving the system time
and comparing it to the starting time. The new simulation time is temporarily stored in a variable
called "new_time"and is compared to the last calculated time. If the two values are the same, then

the clock rule has fired more than once within one second. In that case, the time is not printed and
facts are reset to allow the clock rule to fire again.

A "clock_tick" fact is used in the preconditions of rules to allow them to become ready for firing.
Without the clock_tick fact, a rule may never fire. Another time feature provided is the tick tocks
function. Often a programmer would like to force a rule to consume clock time. A callto the

tick_tocks function forces execution to enter a side loop where the required time elapses before
execution continues.

COMPARISON

Usability

Most features of PERCNET are easy-to-learn and use While some study of petri-net theory
would benefit designers, much could be done with very minimal knowledge of pea'i-nets. One
difficulty in working with PERCNET was the lack of available documentation on the Tool Com-
mand Language (TCL). All function calls, calculations, communication and ad-hoc

programming are done using this language. Perceptronics provides only minimal documentation
on the use of the language within PERCNET making it very difficult to perform anything more
than the most basic operations. However, PERCNET's graphical interface is very appealing to
users.

CLIPS is a rule-based language, which means that there may be a larger learning curve than there
is with PERCNET's point-and-click interface. After the initial learning stages, however, CLIPS
leaves a developer with an immensely powerful simulation tool. The main advantage is flexibility.
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CLIPS waswritten in theC programminglanguageandis completelycompatibleandextendible
with C functions. Knowing C in advance can significantly lessen the learning curve. Many of the
"non-C" features of CLIPS resemble LISP. CLIPS has been a tremendous surprise to work with.

A basic proficiency with CLIPS may be gained quickly and one can learn to do very useful things
with the language. Writing the rules for the simulation was actually the easiest part of the project.
As proficiency with the language developed, more advanced features provided tremendous

possibilities. The manuals present the language in a very easy to read format, contained extensive
reference sections and sample code. Furthermore, the manuals outline how CLIPS may be easily
extended to include C (and other) functions written by programmers.

Functionality

As this project began, PERCNET was a closed package, that is, there was no provision for com-
municating with other applications. NASA contracted Perceptronics to modify PERCNET to
allow for such a feature. The final result was a revision of PERCNET which would allow com-

munication with other applications through the use of sockets. Applications are allowed to request
that global variables be retrieved and/or modified. PERCNET essentially opened it's blackboard

(i.e., global data store) to other applications. The other application in this case being the server.

After several functions were added to CLIPS (see descriptions in previous sections), the CLIPS

system performed the same functions as the Petri Net simulator. If a new system is prototyped, the
only changes which would be needed are to the knowledge base. The communication link devel-

oped for the Sammi-CLIPS architecture uses the blackboard paradigm to improve modularity,
flexibility, and efficiency. This form of data management stores all information in a central loca-
tion (the blackboard), and processes communicate by posting and retrieving information from the
blackboard. The server manages the blackboard, allowing applications to retrieve current values
from the board and to request that a value be changed. The server accepts write requests from
valid sources and changes values. The comparison of the two architectures goes much further than

comparing the two simulation designs. The design of the communication link significantly affects
the flexibility and performance of the architecture.

Performance

The performance within the Petri Net architecture was not acceptable for real-time interface
simulation. Interfaces running within this architecture exhibit a very slow response rate to user
actions when PERCNET is executing within its subnets. The PERCNET execution is also using
excessive amounts of swap space and memory which also affect the refreshing of displays.

Early analysis attempted to find the exact cause of the poor performance; however, only limited
work could be done without access to PERCNET's source code. Since PERCNET's code was
unavailable, we could only speculate about what was actually happening to cause the slow

responses. It was determined that the cause of much of the problem was that PERCNET was
trying to do too much. In the PERCNET simulation architecture, PERCNET is actually the data
server for the environment. The global blackboard is maintained within PERCNET. The server

only provides a mechanism for passing information between PERCNET and other applications.
The server is connected to PERCNET by a socket and the server is actually on the "client" end of

the connection-oriented socket. The server establishes connections with PERCNET and Sammi

and then ahemately receives information from each. Any data or commands received from Sammi
are passed immediately to PERCNET. Commands from PERCNET for Sammi are passed
immediately through, as well. Finally, the server sends Sammi copies of all variables. Since
PERCNET is the blackboard server, as well as the simulator, PERCNET's performance would

naturally be affected by the added burden.
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Lastly, the method provided for sending variables to the server was terribly inefficient. When a
calculation was performed in the simulation model for a variable that was needed by the interface,
that variable was passed to the server whether or not it's value had changed from the previous
iteration. No mechanism was provided for restricting the number of redundant values passed
across the communication link. As a result, PERCNET passed every value back to the server when

only a few had actually changed.

Each of these limitations was addressed in the design of the server and blackboard in the rule-
based architecture. The server program may be divided into three portions: blackboard manage-
ment, Sammi routines, CLIPS routines. The Sammi and CLIPS routines are provided to

communicate with the respective applications. These routines map data into a special "blackboard
entry" form and pass the data to the blackboard management routines. The blackboard routines
also return information to the Sammi and CLIPS routines for routing back to the applications. The

blackboard management routines require that each application (many more applications may be
supported) register itself initially. Applications are assigned application identification numbers
which are used for all subsequent transactions. This application number allows the blackboard to
closely monitor which variable values each application needs to see. It also provides a mechanism
for installing a priority scheme for updates.

The overwhelming advantage of the CLIPS and blackboard combination is the flexibility and po-
tential they provide. Features are provided that allow modifications which can affect performance.
The ability to tune the performance has allowed the simulation architecture to be tailored to spe-
cific running conditions (e.g., machine limitations, network traffic and complexity of the interface

being simulated). Several parameters may be modified to alter performance. Tuning tests have
improved performance. More detailed performance testing is planned to verify the results.

CONCLUSION

The goal of the architecture has been to provide simulation of user interfaces so that they may be
designed and evaluated quickly. An important portion of the dynamic prototyping architecture is
therefore the simulator. Ease-of-use is very important, but performance is critical. The Petri Net
architecture's ease-of-use is currently its only advantage over the Rule-Based architecture. The
Rule-Based design overcomes this with power and flexibility. Work currently in progress include
a detailed analysis of the performance of the communication link and a design of a graphical
interface to CLIPS.
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ABSTRACT

Designing engineering objects requires many engineers' knowledge from different domains.

There needs to be cooperative work among engineering designers to complete a design.

Revisions of a design are time consuming, especially if designers work at a distance and with

different design description formats. In order to reduce the design cycle, there needs to be a

sharable design description the engineering community, which can be electronically

transportable. Design is a process of integrating that is not easy to define definitively. This paper

presents Design Script which is a generic engineering design knowledge representation scheme

that can be applied in any engineering domain. The Design Script is developed through

encapsulation of common design activities and basic design components based on problem

decomposition. It is implemented using CLIPS with a Windows NT graphical user interface. The

physical relationships between engineering objects and their subparts can be constructed in a

hierarchical manner. The same design process is repeatedly applied at each given level of

hierarchy and reeursively into lower levels of the hierarchy. Each class of the structure can be

represented using the Design Script.

INTRODUCTION

Design is a fundamental purposeful human activity with a long history. Design can include

creative artistic and engineering components. Knowledge-based design systems deal with factors

that tend to be limited to the engineering aspects of design. Many researchers have developed

knowledge-based engineering design systems. Mag. y of these systems were developed for the

specified design domain using their own unique problem solving method [2, 5, 9, 12, 21]. Some

have tried to develop domain independent knowledge-based design systems. The DIDS (Domain

Independent Design System) by Runkel [18] was developed as set of tools that can provide a

configuration-design system from a library. DOMINIC [10] treats design as best-first search by

focusing on the problem of iterative redesigning of a single object. GPRS (Generative Prototype

Refinement Shell) was developed by Oxman [15], which used Design Prototype [8, 22] as a

knowledge representation. In the real world, most engineering designs are so complex that a

single individual cannot complete them without many other engineers' help. Cooperation

between different engineering designers is not a simple process because each designer may have

a different perspective for the same problem, and multiple revisions of a design are needed in

order to finish a project. Designers may have different interpretations of the same design value

or may want to access special programs to determine values for thedesig n variables in which

they are interested. In order to' achieve the above goals, there needs to be a design knowledge
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representationthat can be shared between designers and that can be modified to the designers'

needs. In addition, if a designer needs to execute a special program, the design system should

provide a scheme to do so. This paper describes a Design Script as an abstract model of the

design process that is based on hierarchical design structure and shows how to capture design

knowledge and integrate data and tools into a knowledge based design system.

MODELS OF DESIGN PROCESSES

Dieter [7] describes the design process in his book as follow: "There is no single universally

acclaimed sequence of steps that leads to a workable design." But it is possible to make the

fundamental design process as simple as an iterative process of analysis, synthesis, and

evaluation (Fig. 1). Analysis is required to understand the goals of the problem and to produce

explicit statements of functions. The synthesis phase involves finding plausible solutions through

the guidance of functions that are produced from the analysis phase. The evaluation process

checks the validity of solutions relative to the goals. The evaluation phase can be divided into

two different types of jobs. One is to compare the solution with existing data if the solution is

composed of comparable data, and the other is to compare the solution values derived from the

current design solution through simulation process executions with the given goals.

Analysis

Synthesis

Compare

Comia re

1
Calculation

Fig.1. Goal,Function,Formand BehaviorRelationship

Problem decomposition is a well-known problem solving strategy in knowledge-based design

systems. Once a complex design problem (a complete object) is decomposed into simple design

problems (subparts), it is much easier to handle. The engineering design object is considered as

being composed of sub-parts in a hierarchical structure. In other words, the problem of designing

a complete object is comprised of designing number of subparts recursively until the designing

process reaches the elemental subparts. The extent and complexity of a design problem can be
different at different levels of hierarchy, but the identical design process can be applied at all

hierarchical levels.
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DESIGN SCRIPT

The DS (Design Script) is presented in this paper as an engineering design knowledge

representation scheme. The DS is implemented in COOL (CLIPS Object Oriented Language) of

NTCLIPS which is a Windows-NT version of CLIPS developed by the authors [20]. The

common design process which is composed of analysis, synthesis, and evaluation phases can be

abstracted by encapsulating design activities, such as goal decomposition and invoking methods.

The abstracted model Design Script is placed at the top of the design knowledge for a domain.

The major components of the DS are the goals, functions, and form of the part which is designed

(Fig. 2). These abstractions include how the goals are decomposed and passed to lower level

objects, how the functions of subparts are represented and used, and how explicit knowledge

about reasoning and transforming process are formed and used. The instances of design sub-part
can inherit these abstractions.

|

I
GOAL

G-ID
G-TYPE
G-CONTENTS
FUNCTION-G
CURRENT-F

ExecFunc

DESIGN SCRIPT

NAME
JOB-ID
PART-OF
HAS-PARTS
GOAL
ATTRIBUTES

GelAIbtnstance
AddAttr

GeUarWeight
GelNlrVak_
PuINtrValue
CreateSubPad
Setlnit
BuildStrcl

ATTRIBUTE

TYPE
NAME
VALUE

1+

FUNCTION

F-ID
F-TYPI::
F-CONTENTS

ExecNextFunc

Fig. 2. Main Structures of Design Script

Usually, the initial goal of the design object is represented using natural language rather than by

using a technical representation such as "power amp can drive as low as 2-ohm impedance loud

speaker with 80 dB SPL." Then the goal is refined to the functions such as "require an amplifier
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which can provide 20A current at peak with at least 200 W/ch power." The functions of the

initial stage of the design process are regarded as goal of the next stage of design. The relations

between goal and its functions are acquired knowledge from the designer's point of view. When

a designer sets goals (or requirements) for the design object, the designer has what should be

required to meet the goals. Although, the relations between goals and functions are intrinsic

knowledge, they should be represented explicitly in the knowledge-based design process. The

Goal slot of DS will hold a bound instance of the Goal-Design class as a slot value. Each

instance of the Goal-Design class has its intrinsic functions kept as a multi-value slot to meet

current goals. The Attributes slot of DS is a multi-value slot which keeps all the design variables

and values for the design problem. DS provides various manipulation methods such as read-out

and write-in the value of the attribute, decomposing the design into sub-parts, and creating

instances of attributes and sub-parts. There always exist tradeoffs between generality and

efficiency. To improve the efficiency of the design system, it could be built as a very domain

specific. On the other hand, to make it general may require a sacrifice of efficiency. The DS has

been developed to be very general, in that it can be applicable to different design domains.

GENERALIZATION AND AGGREGATION

Generalization is a powerful abstraction that can share commonalties among classes. Usually the

generalization is represented as a superclass. The Design Scrip is a generalization of the design

process that is based on the hierarchical structure of engineering objects. Each subclass inherits

the features of its superclass. The inheritance mechanism of most object-oriented programming

languages is based on a sub.type or is-a relation between classes. The COOL of CLIPS is not an

exception. All the parts of a design object are represented as a subclass of DS so that they can

inherit the properties of DS by using the built-in is-a hierarchy relation. But, the hierarchy

relations among the parts themselves can not be represented by using is-a or kind-of relations,

because they are actually part-of hierarchies (Fig. 3). Aggregation is the has-part or part.of

relationship in which objects are part of the whole assembly. For example, let's take an example

of a SO-8 package. We can say "An SO-8 package is a kind of lC package.'" and "IC is a kind of

electronic component." ("SO-8" stands for "Small Outline 8 pin" and "IC" stands for "Integrated

Circuif') We can see the is-a hierarchy relations between an S0-8 package, 1C package, and

electronic component. If we build the hierarchical structure for S0-8, we can see that it is

composed of a mold material, a lead frame, wire bonds, etc. The lead frame is composed of

lead l, lead2, die pad, etc. The relationship between these parts can not be represented with is-a

relations. We can say the lead frame is not a type of SO-8, but a sub-part of the SO-8. So, in

order to express the design knowledge, a mechanism must be available to handle the part-of

relationship hierarchy. The slots PART-OF and HAS-PART of DS are used to define the part-of

relations relative to super and subparts of the part under consideration.

DESIGN KNOWLEDGE MANAGEMENT

Many design engineers have stressed the uselessness of unmodifiable design knowledge. If fixed

engineering design knowledge doesn't have a self-adaptive function for new situations, it may

not work properly in these cases. For our system, the DS needs to follow the syntax of CLIPS

when building a design knowledge base for a specific application design domain, because DS is
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DESIGN SCRIPT

Mold Materiali

AGGREGATION

_=o c== !

ead! rame ii

Lead1 Lead2 Lead8 DiePad

'\

Chip

Fig, 3. Hierarchical Structure of SO8 IC Package and Design Script

implemented in CLIPS. The syntax of CLIPS is similar to that of the LISP language which uses

lots of parentheses. CLIPS uses prefix notation in numerical computations rather than infix

notation, which is generally used to represent algebraic expressions. If the developer is not
familiar with this type of environment, it could be difficult to build the knowledge base.
Considering that most design engineers are not computer scientists who can easily adapt to new

programming environments, a user interface for knowledge entry and building is provided as a
most essential part of the design system. The DS provides a GUI (Graphical User Interface)

empty form as part of its functionality (Fig. 4). The design knowledge can be built easily by
using the knowledge entry dialog-box on a part by part basis. What the designer has to do is fill

in each field of the dialog box with the necessary information for designing or analyzing the
object or subpart. It is an essential process to specify the design object in the hierarchical

structure before entering design knowledge. Each dialog-box can edit design knowledge for a
single (composite or elemental) part, such as its part-of and has-part relations, its goal, functions

of the goal, design attributes for the part, and its numerical methods to get the implicit values of
its design variables. When the user edits the dialog-box, the contents of the fields are stored

temporarily in instances of the KENI"RF class. Because the purpose of the gENTRY class is to

provide an editable form of design knowledge that is easy to use, the contents of the design
knowledge are kept as text in the corresponding slot. Once this information is entered by the
user, it can be saved into a file in the form of instances of the KENTRY class from the main

menu. Later, the user can modify the design knowledge by loading a previously created version
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from the file. Whenever the user wants to run the design system with the current design

knowledge, he first compiles the knowledge from the instance form to the form of classes and

their message-handlers which are in CLIPS syntax.

EDIT KNOWLEDGE

I_RT.NAME
RM_T-OF
SUB-PART
GOAL
FUNCTIONS
ATTRIBUTES

I

FUNC.REQ ATI'IR.METHO0

REQUIRES
CONI-_TS

Fig. 5. Knowledge Entry Class

DESIGN APPLICATION: LEAD-FRAME DESIGN FOR PQFP

The DS has been applied in the domain of Lead-Frame design for a plastic quad flat pack IC

package (PQFP). Acquiring design knowledge for the lead-frame of a PQFP is not a simple

process. First of all, manufacturers tend to use their own knowledge to produce packages for

their chips. Moreover, each company wants to keep this knowledge as proprietary information.

There is available a limited amount of public design knowledge such as the standard package

outlines contained in the JEDEC Package Standard Outline, research paper [11 ], or handbooks

[19, 23]. This standard is widely used throughout the community of semiconductor

manufacturers. The JEDEC standard is just for the outside dimensions, such as body size, length
of outside lead, lead pitch, etc. The JEDEC manual doesn't refer to the inside dimensions of the

package. This limitation reveals one difficulty of standardization in the packaging world. The

major goal of the lead-frame design system for PQFP is to define the geometry of a lead-frame

which can satisfy the JEDEC standard and the electrical and mechanical design constraints.

Fig. 6 describes the design knowledge for a lead-frame in graphical format. The values of lead-

pitch, lead-width, and outside lead length are decided from JEDEC standard dimensions which

are stored in a JEDEC database. The size of the chip bonding pad is decided by reference to the

chip design technology base in use. The maximum wire span of the bonding wire from the

bonding pad on the chip to the lead tip of the lead-frame is 100 mil. The lead tip pitch is around

10 rail. The width of the lead tip is around 6 mil. The length of the lead tip is dependent on its

position. Each lead has an anchor hole. The fineness of the lead tip is also limited by the sheet

metal blanking technology. The whole area of the metal part inside the plastic package is equal

to or a slightly less than half of the entire plastic area.
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Fig.6. DesignKnowledgeforthe Lead-Frameofthe PQFP.

When a user loads or edits the design knowledge using the Knowledge Entry dialog box and

compiles it, the design knowledge is translated into CLIPS syntax (Fig. 7.). The first part of the

knowledge is for the definition of LF-PQFP (Lead Frame of Plastic Quad Flat Pack) class

which has GOAL and HAS-PART slots. The default value of the GOAL slot is the name of an

instance of the GOAL-DESIGN class which has information about how to achieve the goal.

Another multi-value slot contains the name and number of the subpart class. The sub-part of the

lead-frame of the PQFP is composed of one die-bond-pad and the number of I/O leads in one

octant of the package.

(defclass LF-PQFP (is-a DESIGN-SCRIPT)
(role concrete)
/slot GOAL (create-accessor read-write)(default "LF-lstGoar'))
(sot WIRE-SPAN (create-accessor read-writeXdefautt 100))
(multislot HAS-PART (create-accessor read-write)(default "DieBondPad" "Lead1"

"Lead3"... "Lead11"))
)

(message-hand|er LF-PQFP set-attributes0
(bind ?self-i (instance-name ?self))
(bind ?ins-name (symbol-to-instance-name (sym-cat ?self-i "LEADTIPPITCH")))
(make-instance ?ins-name of AN-ATTRIBUTE

(A'r'FR-NAME "LEAD-TIP-PITCH")
(value 0.254))

(send ?self add-attr ?ins-name)

(message-handler LF-PQFP decide-Die-Size ()
(bind ?SB (send ?self get-attr-value (send ?self get-attr-instance ':Die-SB"))
(bind "_No (send ?self get-attr-value (send ?self get-attr-instance N-IO"))
_tbind 5Pd (send ?self get-attr-value (send ?self get-attr-instance "PAD-PITCH"))

ib nd "?DieSize (+ (* 2 ?SB) (*?Pd (+ 1 (/?Nio 4)}))) ............. "r - "

send "_self put-attr-value (send ?se f get-aEr-instance P'AU-P'H_N ) .uie_ize)

"LeadZ'

Fig.7. CLIPS syntaxfor the Classand Messsge-Handler.
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The reason for designing only an octant of I/O leads is that the geometry of the remaining leads

can be derived from this portion of the geometry by considering the symmetry of the lead-frame.

The next message-handler takes care of creating and storing the in/_tances of the attribute. The

last message-handler is an example of a method used to decide the design value of the attribute.

Fig.8. DesignResult:Lead-Frameofan 84 pin PQFP

Figure 8 shows the lead-frame of an 84 pin PQFP that was created by running the above lead-

frame design system. The outer dotted square represents the plastic body of the PQFP and the

inner dotted square shows the minimum size of the chip. The figure is drawn using the GNU plot

program by providing the geometry that is produced by the lead-frame design system.

CONCLUSIONS AND FUTURE WORK

The main contribution of this research is in providing a general design-process control

framework and a general design-knowledge representation scheme for physical objects to be

designed using knowledge-based design systems. The Design Script developed here can be

applied in any design domain because it contains domain knowledge independent about the

design process. Usually, design is not only an individual activity but also requires cooperative

team work that involves a number of designers from different fields. To support cooperative

design work, DS provides an excellent framework that can be used in different domains. The

capability of DS has been demonstrated in the domain of leadframe design for PQFPs.

This work is a part of the ongoing project. Much remains to be done to enhance the functionality

of DS. Especially, management of design knowledge is a good candidate for future work. The

current knowledge entry process doesn't provide any debugging functions. The design

knowledge may be easily broken without careful knowledge entry. But there is also a need for a

version management method like RCS (Revision Control System) or Aegis to enhance the

productivity of cooperative design work. This enhancement is being considered to provide such
functionality to the DS
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ABSTRACT

Role-playing games have been a source of much pleasure and merriment for people of all ages.

The process of developing a character for a role-playing game is usually very, very time

consuming, delaying what many players consider the most entertaining part of the game. An

expert system has been written to assist a player in creating a character by guiding the player

through a series of questions. This paper discusses the selection of this topic, the knowledge

engineering, the software development, and the resulting program that cuts the time of character

development from about 4 hours to 30 minutes. The program was written on a PC and an

Apollo in CLIPS 4.3 and currently runs on the Apollo.

INTRODUCTION

The 1993-1994 Independent Study Mentorship (ISM) program through the Northside Independent

School District in San Antonio started in the Summer of 1993. The ISM program allows

students to study an area of their own choosing for a whole school year. During the ISM year,

the student is paired with a mentor from the community who will guide the student in his or her

studies. At the end of the ISM year, the student must have developed a tangible product utilizing

the knowledge he or she has acquired throughout the year. The Young Engineers and Scientists
(YES) program is for ISM students interested in the areas of engineering and applied sciences.

YES gives students a chance to see what actually is done in careers within the engineering and

sciences. The YES program consists of two components: a three week intensive study at

Southwest Research Institute (SwRI) and a one-on-one mentorship through the school year. In

YES, the mentors are selected from the staff at SwRI, and they mentors are supported financially

by the NSF grant that funds the YES program. In most other mentorship programs, the
mentor's time is provided on a volunteer basis.

Felicia was a YES program student who was interested in artificial intelligence, specifically

expert systems, which was Carol's expertise. Together we designed an expert system to help

role-players build their characters more efficiently and with much less time required. In this

paper, the steps taken in developing the system are outlined including product development,

research, programming, and conclusions.
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PRODUCT DEVELOPMENT

After deciding upon developing an expert system, an appropriate topic had to be selected. Since

Carol's Ph.D. work was in game playing and Felicia had an interest in role-playing games, we

decided to work in the domain of role-playing games. When we looked into the current state

of the gaming world, we saw that a tremendous amount of time is required in making a

character for many role-playing games. Role-playing consists of assigning traits according to

a set of rules to a character which the role-player will use to act out all actions as if the player

were that character within a story. To make a specific desired character, a player typically takes

time to make sure the character will be described well on paper and play well during the game.

We decided to develop an expert system to assist in character development so that the process

of developing a character would take much less time and would hopefully develop a better

character with which to play the game. One way to develop a character is by asking a series

of multiple choice questions of the player. Each response by the player would further develop

and define the character and would lead to the next set of questions based on the previous

response. The questions were developed in such a way so as to have the character be one that

closely matches the qualities and characteristics that the player is picturing about their character.

This question development is where much of the research was done in addition to determining
a good way to implement the design of the system.

RESEARCH

The White Wolf Storyteller game called Mage was selected because of its popularity and

availability of experts in playing the game and especially in developing characters. We designed

our system to be a series of questions of the user to determine the characteristics preferred by

the player. We first gathered information and performed our knowledge engineering by
observing games being played and interviewing the players about character generation. A few

local role-players who knew the game and played it were willing to be our experts. A number

of multiple choice questions were developed in interviewing the expert game players.

The Mage character sheet shown on the next page is used in character development and play of
the game. It is broken up into many sections. The first section consists of the character's name

and other components that make up the character's basic identity. The second section,

attributes, pertains to the character's mental, social, and physical characteristics. The third

section, abilities, defines a character's talents, skills, and knowledge or the things they can do.

The fourth section, advantages, deals with the spheres of magic the character can obtain or use.

The last section contains the character's health levels, combat weapons, and other characteristics

that have to do with the character's longevity. This last section and the advantages section are

not developed in the expert system. The Mage Character Advisor walks a player through
selecting the attributes and abilities for the character being developed.

On the Mage sheet, each circle by a characteristic represents a point for that area when it is

filled. The point levels indicate how much of that characteristic or ability the character

possesses, and in turn how many dice can be used in playing the game. Players can lose or gain

points during the course of a game, and during games the Gamemaster (GM), who is the person

who runs the game, gives out experience points which can be used to buy more points.
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PROGRAMMING

The CLIPS programming language was selected for its relative ease of use, availability, and

applicability to the problem solution. The program was originally' developed on a networked PC

and later moved to an Apollo Domain 4000 in order to run the 600 rules together. The program

organization revolves around the characteristics to be developed. One set of questions needed

to be developed for the attributes, with a subset of questions for each of the physical, social and

mental attributes. Another set of questions had to be developed for abilities, with a subset of

questions for determining point values for the various talents, skills and knowledge abilities.

Finally, a summary or tally of the resulting character development must be given to the user.

For the attributes, the three areas are prioritized by asking the user which one is most important
to them and then which one is secondarily important to them. Then according to the rules,

points are assigned to each choice with first, second, and third receiving seven, five, and three

points respectively. The user is then asked to work with the first choice and the three divisions

under it. The divisions represent sub-areas of each attributes such as physical which contains

strength, stamina, and dexterity. Next a strategy was developed for distributing the points to

the sub-areas. Since the point amounts are relatively low, one multiple choice question is asked

of the user where all three sub-areas are possible answers. For the first choice, the user would

receive seven questions, second would receive five, and third three. Since each of the sub-areas

would represented in every question, a running total is kept of the number of times a sub-area

is picked, and when questioning for that choice is done, that number becomes its level. This
strategy is implemented for all three attribute choices.

As an example, the following questions are asked to support point distribution in the social
attributes and a summary is given:

You have been alloted 7 points for your first choice: social

Please answer the next question_ as truthfully ae possible.

Which is more in_ortant7

<leading, people, -persuading> them, or -looking-good> for them: leading
being <smooth>, <eloquent>° or <alluring>: alluring

Consider these scenarios and type your response.
At • party, you

<i> are generally sociable, talking to all,
<2> grab the center-of-attention, or
<3> are the trend-getter: 3

After a concert,

<1> you talk go well that people think you are in the bend,
<2> are asked backstage by the band personally, or

<3> you can talk the bouncers into letting you and all of your
friends backstage: 2

When going to a Job interview, you

41> make an excellent first impression,

<2> impress them with your manners and attitude, or
<3> convince them how valuable you would be to them: 2

Which activity are yOU beet-suited for?

41> recruitment for clubs and organization-,
<2> fashion modeling, or

<3> double-talklng: 2

Due to your answers to the preceding questions, your points
have been alloted ae follows:

Charisma : 3 "Good: People trust and confide in you."
Manipulation : 2 "Average: Others might believe you.,

Appearance : 5 "Outstanding: First reactions are either that of awe, 'Intense
Jealousy or complete solitude. •

(You have autcemtically been given one point in each area}
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In the example above, the user is presented with three different types of questions: synonyms

of the sub-areas names, situations, and best-suited for what-type question. A situation is:

When going to a job interview, you (1) make an excellent first impression; (2)

impress them with your manner and attitude; or (3) convince them how valuable

you would be to them.

A choice of number one would be a part to the sub-area of appearance, a choice of two would

be charisma, and a choice of three would be manipulation. Once the questions end, the

summary comes up with the point totals in each area and a short explanation of what that point

level means, as given in the Mage handbook.

For the abilities, the user must again prioritize the three abilities from first to third choice.

Points are assigned but in different amounts: first choice receives thirteen, second receives nine,

and third five. More points are assigned because of the greater amounts of abilities a character

can possess. In this section, the same strategies for point assignment as in the attributes cannot

be used because of the larger number of points assigned so a new strategy was needed. Since

it is a player's choice whether or not to possess any ability, the expert system gives them that

choice. Instead of multiple choice questions, the questions become yes or no responses that

describe a type of ability and then gives the choice of having the ability or not. If the ability

is not chosen the next ability appears for questioning, but if the ability is wanted, the user types

yes and a second part of the question appears to determine the number of points to assign to that

ability. Since the user has already selected the ability, one point is automatically assigned in that

area and one point is subtracted from the point total. All traits on the character sheets are

ranked from zero to five, but since the character has one point in the area, the area need only

be ranked from one to five. The second part of an ability question asks the user to rate the

character in the ability on a scale of one to five. The number typed becomes the character's

level in that ability, and that number is also subtracted from the point total. Questioning

continues until all the points are distributed and each ability is covered. At the end of the

questioning, a summary appears showing where each point went and what each point level

means.

An example of a couple of rules are given showing the code as written by Felicia for the user

being asked if the character has some science ability in the knowledges area, and the rule on

dealing with a positive response in order to assign the number of points to science. The

following page show two rules. For program flow, to go from one question or line of

questioning to another, it is required that the previously asserted statement be in the conditions

part of the rule. So for each possible outcome, there is a unique asserted statement and one to

match it in the appropriate following rule. In the following rule, there are two possible

outcomes. If the response is yes, the program asserts (abi-kno-thi-sc TRUE), and if no (abi-kno-

thi-g3 TRUE).
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(defrule abi- kno- thi-q3 - ch2
?x <- (abi-kno-thi-q2 TRUE)
?xkno <- (curptsknow ?curptsknow)
?xn <- (numqk ?numqk)
m)

(retract ?x)

(printout t "Number of points left : "?curptsknow crlf)
(printout t "Number of questions lefCz "?numqk crlf)

(bind ?nt_mqk (- ?numqk I))
(retract ?xn)
(assert (numqk ?numqk) )

(printout c "Do you have a basic understanding of the different applications of

(printout t "(i.e. physics, chemistry, botany, biology, etc.): ")
(bind ?scl (read))

(while (&& (neq ?mci y) (neq ?scl n))
(printout "y/n: ")
(bind ?mci (read)) )

(bind ?sci (lowcase ?sci) )

(printout t =" crlf)
(if (eq ?sci y)

then (bind ?ptssci I)

(bind ?curpteknow (- ?curptoknow ?ptseci))
(retract ?xkno)

(assert (curpteknow ?curptsknow))
(assert (abl-kno-thi-mcl TRUE))

else (if (eq ?sci n)

then (retract ?xkno)

(assert (curpteknow ?curpteknow) )
(bind ?levscl 0)

(assert (levscl ?levscl))
(bind ?meanscl •m )

(assert (meanscl ?meanscl) )

(assert (abl-kno-thl-q3 TRUE) ) ) ) )

(defrule abl -kno- chl -mcience-pt2 -ch2
?x <- (abi-kno-thi-ecl TRUE)

?xkno _- (curptmknow ?curpcsknow)
m)

(retract ?x)

(printout t =On a scale of I Co 5, rate your knowledge in science. • crlf)

(printout t "(Use points carefully): ")
(bind ?levscl (read})

(while (&& (neq ?levsci I) (neq ?levsci 2) (neq ?levmci 3) (neq ?levsci 4) (neq
(printout t "i to 5: ")

(bind ?levsci (read)) )
(assert (levscl ?levsci) )

(if (eq ?levsci 1)

then (bind ?meanmci "Student: You can make stoke bombs w/ a chemistry met. ")
(assert (meansci ?meaneci) )

(bind ?ptemci 0)
(bind ?curptsknow (- ?curptsknow ?ptmsci))
(retract ?xkno)

(assert (curptsknow ?curptsknow) )
else (iX (eq ?levaci 2)

then (bind ?meansci =College: You understand the major theories and a
(assert (meansci ?meansci) )

(bind ?ptssci i)

(bind ?curptsknow (- ?curptsknow ?ptsscl))
(retract ?xkno)

(assert (curptsknow ?curptsknow) )
else (iX (eq ?levsci 3)

then (bind ?meanscl "Masters: You could teach hlgh-school scl
(assert (meaneci ?meanscl) )

(bind ?ptmsln 2)
(bind ?curpteknow (- ?curptsknow ?ptescl))
(retract ?xkno)

(assert (ourptsknow ?ourptsknow) )
else (if (eq ?levsci 4)

then (bind ?meansci "Doctorate: You m/ghc win a Nobel
(assert (mam'taci ?meansci) )
(bind ?ptsmci 3)
(bind ?curpteknow (- ?curptmknow ?ptmsci))
(retract ?xkno )

(assert (curptsknow ?curptsknow) )
else (if (eq ?levsci 5)

then (bind ?meansci "Scholar: Albert Einstein

(assert (meanscl ?meaneci) )
(bind ?ptmsCi 4)
(bind ?curpteknow (- ?ourptsknow ?ptssci
(retract ?xkno )
(assert (curptsknow ?curptsknow) ) ) ) )) )
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CONCLUSIONS

The subject matter experts actually used the advisor system the day of the ISM Spring

Presentation as part of the presentation speech. Our experts agreed the system was effective in

cutting the time usually needed for making a character. They generally liked the results given

by the system. Although some experts agreed the system worked well, they said they still would

prefer the old way with paper and pencil for tradition's sake, but could utilize the advisor as an

additional tool to assist in character preparation.

Even though only sixty percent of the entire character sheet for Mage was programmed, the

testers and experts agreed the system was efficient and solved the problem of character-building

time consumption. The rest of the character sheet could be easily added the existing program.

This work shows one potential Way for expert systems to move into the entertainment arena,

gaming in particular. We expect the basic program framework could be generalized for other

role-playing games. A question bank could be developed from which a GM would select

questions to be asked of the user in defining the characteristics for use in any role-playing game.
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The Computer Aided Aircraft-design Package (CAAP)

By Guy U. Yalif :_ [,LJ(517) 973-1015

Abstract

The preliminary design of an aircraft is a complex, labor-intensive, and creative process. Since the
1970's, many computer programs have been written to help automate preliminary airplane design.
Time and resource analyses have identified, "a substantial decrease in project duration with the
introduction of an automated design capability" (Ref. 1). Proof-of-concept studies have been

completed which establish "a foundation for a computer-based airframe design capability" (Ref. 1).
Unfortunately, today's design codes exist in many different languages on many, often expensive,
hardware platforms. Through the use of a module-based system architecture, the Computer Aided
Aircraft-design Package (CAAP) will eventually bring together many of the most useful features of
existing programs. Through the use of an expert system, it will add an additional feature that could

be described as indispensable to entry level engineers and students: the incorporation of "expert"
knowledge into the automated design process.

Introduction

It is widely recognized that good engineers need not only the textbook knowledge learned in
school, but also a good "feel" for the designs with which they are working. This "feel" can only be
gained with both time and experience. An expert system is an ideal way to codify and capture this
"feel". This idea is the key feature of CAAP. With this package, engineers will be able to use the

knowledge of their predecessors, as well as learn from it. The potential value of such a program in
aiding the engineering professionals as well as the student is great.

The ultimate goal of CAAP is to design a plane in an intelligent way based on user specifications.
A rough-sizing configuration is created from user inputs and then analyzed using rule based
programming. Throughout the design process, the user is given total access to the CAAP database,

which is implemented using object oriented programming. The user can see how variables affect
each other, view their present values, and see, create, and arrange rules in a customizable fashion

using 'q'oolbox" fries. CAAP exists as a core program with Toolbox flies that add functionality to
that core, similarly to the popular program "MATLAB". CAAP's core program has been written
while its Toolbox files ate still in development.

System Overview

Preliminary aircraft design, as described in above, is a multi-faceted problem whose features have
driven the choice of software platform used to implement CAAP. This section will detail the

features that led to a CLIPS based implementation for CAAP. One aspect of the usefulness of an
expert system to the CAAP package has already been discussed.

The design process is a potentially iterative procedure. This is best explained with an example.
During a hypothetical atrplane design, one might re-size the wing five times. On the other hand, it

is possible that the engineer will not alter the original fuselage. The possibility of iterative re-design
for some components and not for others def'mes a potentially iterative process. Airplane design is
such a process, and it is therefore well modeled by the rule based programming syntax of an expert
system.

As other designers have noted, "tremendous amounts of data and information are created and

manipulated [during the aircraft design process] to produce numerous parts which are eventually
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assembled to a sophisticated system .... It is becoming clear that a critical issue to effective design

is the efficient management of design data" (Ref. 2). The data produced during the design process
is voluminous at the very least, but it is not haphazardly arranged. The information needed to

design a plane falls into organized patterns. Specifically, a hierarchical structure exists for most
components of an airplane. One such component is engine classification, as illustrated in Figure 1.
This figure diagrams the hierarchy that is used to describe engines in CAAP. This type of logical

hierarchy exists throughout the airplane design process.

The data used during airplane design can be very complicated. Each part of the plane, such as the
engine, has its own specifications. Each part also contains subparts, just as the engine has a
turbine, compressor, and fuel pumping system. Each of these subparts has its own specifications
in addition to sub-subparts. Therefore, design data needs to be arranged in an ordered manner that
is readily accessible and understandable to the user. Object Oriented Programming is useful for
storing the complex, voluminous, and hierarchically arranged data produced during airplane
design. The usefulness of OOP has been recognized elsewhere in the aerospace industry. In a
study entitled "Managing Engineering Design Information" (Ref. 2), ten different data storage
methods were examined. The conclusion: "The object-oriented data model was found to be a better
data modeling method for modeling aerospace vehicle design process" than any of the others
studied (Ref. 2).

OOP also facilities the organization of the large number of routines available to aid in aircraft
design. Effective routine organization is a desirable quality of any airplane design program. CAAP
seeks to accomplish routine organization in two ways. First, routines are grouped into the Toolbox
files introduced above. Second, within each Toolbox, different equations are applied to different

parts of the airplane as is appropriate. Having the ability to separate the equations according to
airplane component aids in the logical organization of the program. Such separation also increases
the efficiency of CAAP. For example, it would be a waste of computational time to have the aspect
ratio rule searching instances of the FUSELAGE class for possible span and area values. OOP and
CLIPS run-time modules allows the programmer to implement such class-specific routine

separation.

As discussed above, the order of execution of the routines that analyze an airplane cannot be
determined before run-time because of the potentially iterative nature of design. The routines
themselves, however, are composed of equations that do need to be executed in a predetermined

order. For example, the routine that determines the range-payload curve needs to add up the range
covered during climb, cruise, and descent over and over again until the desired limiting, payloads
are reached. This is an ordered process that is best modeled by a procedural programming

paradigm.

The desirability of using multiple programming paradigms has been discussed above. Because of
these needs, CLIPS was chosen to implement CAAP. CLIPS provides useful and effective rule

based, object oriented, and procedural programming paradigms as well as a high level of cross-
paradigm interactions. CLIPS is also offered on a wide variety of hardware plattorms, ensuring its
ability to the student and professional alike.

A Macintosh platform was used to implement these program design goals. The Macintosh was
chosen because of the widespread access to Macs, as opposed to the limited access available to

more powerful UNIX workstations such as IRIS's or Sun's. Nonetheless, if a user had access to
these workstations, CAAP would be fully portable to their environments. CAAP's text based user
interface has been written completely in CLIPS. A second, graphically based user interface,

however, has been designed strictly for Macintosh use. CAAP has been successfully run on many
different Macintosh models, although no porting tests have been performed for other platforms.
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It has been recognized that a modular layout "will preserve the ability for independent expansion at
a later date" (ReL 3). This key concept is reflected in CAAP's design. As Kroo and Takai have

succinctly stated, "If the founding fathers did not envision that future aircraft might employ
maneuver load alleviation, winglets, or three lifting surfaces, it may be more expedient to rewrite
the code than to fool the program into thinking of winglets, for example, as oddly shaped stores"
(Ref. 4). With a sectioned program, such problems can be quickly alleviated with the addition of
another Toolbox or an upgrade to an existing one.

As mentioned above, CAAP is organized into a central program and a variety of Toolboxes which
add functionality to the base program. The core program represents all of the code that is necessary
to run an expert system which utilizes CAAP's data structures. As a result, this code has the

possibility of being recycled in the future. The Toolboxes will add functionality to the core
program. If someone wishes to run CAAP at all, they need to possess the core program. If
someone also wishes to perform weight sizing of their aircraft, they also need to possess the
Weight Toolbox. If a certain Toolbox is not present while a user is designing an airplane with
CAAP, the part of the analysis that the Toolbox is responsible for will not be completed.
Continuing with the previous example, if the Weight Toolbox is missing, no weights will be

assigned to the various components of the plane. Missing Toolboxes could prevent an airplane
from being completely designed. Nonetheless, arranging a program in this fashion allows users to

customize their personal version of CAAP as they desire. The user will, as a hypothetical example,
have the ability to choose a Roskam Weight Toolbox instead of a Raymer Weight Toolbox, if they
so desired. In addition, if the user does not want CAAP to perform a certain kind of analysis, the
Toolbox based program allows them to disable a segment of code analysis easily. It is worth
noting that no time consuming re-compilation is presendy necessary to remove a Toolbox from

CAAP. A simple menu option allows users to choose which Toolboxes will be loaded at start-up.

Mimicking the real engineer, CAAP's core program will prompt the creation of a rough, initial
sizing for an airplane. The code will then analyze this initial configuration of the plane. If the given
configuration does not meet one of the user's performance specifications, or if the plane does not
pass the appropriate FAR regulations, C/LAP will modify a particular part of the plane.

A diagram of the system architecture that will accomplish these tasks is presented in Figure 2. The
diagram depicts the interactions between CAAP's run-time modules. Into each of these run-time

modules will be loaded routines that perform certain functions in the airplane design process. For
example, the Performance Module will contain routines that determine performance estimates.
Run-time modules are not to be confused with Toolbox files. Toolbox files are files that contain

routines organized in an arbitrary manner chosen by the user. Run-time modules group routines by
functionality only.

The CAAP core program is presented around all of the run-time modules in order to emphasize that
it is the core code that drives all of the routines within the run-time modules and allows them to

perform their allotted analytical tasks. The Initial Sizing Module produces the initial parameters for
the fn'st configuration. The rest of the modules then analyze, alter, and re-analyze the subsequent
configurations. The final plane will be presented to the user through the routines in the Geometry
Graphics Module. The user will then be able to change the proposed solution/configuration, and
the process will start over again. This time, however, the "old" solution with the user's
modifications will become the "initial configuration".

The Rule Writing Utility

The rules that make up CAAP need not only to perform their prescribed functions, but also to

provide variable dependency information to the routine that performs variable assignments for
CAAP. As described later in the Consistency Maintenance section, if a variable in the system is
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calculated, all of the variables that depend on its value must be recalculated. It is useful to maintain
a data storage system which can provide CAAP with these variable dependencies. Rules are no

longer written in their traditional format. In previous versions of CAAP, when a program
developer wanted to add a rule to the expert system, they have had to learn the syntax of rule

writing in CLIPS and then how to hard code the rule into the system. This required coding some
standard constructs that perform some of the repeated type checking that goes on within CAAP.
These constructs were usually very long and "messy", and therefore very time consuming to write.

In CAAP Version 2.0,programmers can add rules to the system by using the Rule Writing Utility
(RWU). In order to adda rule, the programmer creates an instance of the class
RULE_INFORMATION. They can do this manually or with option 8 of CAAP's main menu.
Both methods create objects containing several slots: one set of slots is created listing the input
variables and another set is created listing the output variables of the rule that is represented by the

instance. The input variables can be restricted to be equal, not equal, less than, greater than, less
than or equal to, or greater than or equal to some other value. The text of the calculation that will be
executed by the actual rule is also stored in a slot of the instance of RULE_INFORMATION.

Therefore, the programmer needs only enter two sets of variables (input and output) and a string
representing a calculation (and some housekeeping information). The rest is handled by the RWU.

Before system operation beings, the RWU code creates the class RULE_INFORMATION and the
rule "make rules." "Make rules" creates expert system rules and places them into the Rule Base

based on the existing instaffces of RULE_INFORMATION. It also adds all of the constraint
checking that is necessary for proper CAAP operation. Such a utility could be useful in other

Expert Systems that involve the same type of input and output for each rule. As previously
mentioned, such code recycling opportunities are an important aspect of CAAP.

Once "make_rules" has fired, each rule is represented in two places: one sense of the rule exists in

the Rule Base as an actual expert system rule. Another sense of the rule exists in the Object
Oriented Database as an instance of the class RULE_INFORMATION. This second representation

of the rule is used by the assignment routine to satisfy its need to know how variables depend on
each other. Assignment routine operation and the way the routine uses variable dependency
information are described in the Consistency Maintenance section.

The present method of double representation is more efficient than what was possible with CLIPS
5.1. Previously, if a programmer wanted to add a rule with five inputs and five OUtl?.uts, they.
would have to check that 5 X 5 or twenty-five separate variable dependencies were included m the

dependency functions (in addition to the constraint checking information). In Version 2.0, the
programmer simply needs to list the five inputs and the five outputs of the rule at the time of
RULE_INFORMATION instance creation. This brings CAAP a large step closer towards
decreasing the future programmer's work load. Additions to the Rule Base can now be generated

more easily and more quickly than before.

The Core Program

CAAP's Core Program has been given the basic abilities needed to design an airplane. At the time
of this writing, the Core Program still requires the addition of large amounts of data in the form of
Toolbox flies in order to be able to design an airplane. Nonetheless, the full functionality of the

Core Program has been implemented. The main menu of the package appears in Figure 3.
Descriptive English equivalents are used at every point throughout the user interface. A lot of
attention was focused on making CAAP user friendly in order not to loose any potential users due

to the newness of the program.
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The user is presently allowed to cream airplanes, modify the specifications the airplane is designed
to, and change the airplane's describing variable values. The user may save and load airplanes
from disk. The user is also given complete access to the CAAP database. Designers are allowed to
look at the variable values that represent an airplane, either individually or in a summary sheet
format They may also look at the dependencies that exist within the CAAP database. This valuable

tool would tell the user, for example, that the aspect ratio depends on the wing area and the wing
span for its values (reverse dependencies), and that when the wing span is changed, the aspect
ratio will have to be recalculated (forward dependencies).

The user is allowed to see a list of all variables which have been defined to CAAP and which are
not used in any of the presently loaded rules. This can help designers load the appropriate
Toolboxes or add rules where necessary. Users can write rules during run-time and add them to
Toolbox ides. This feature allows for simple expansion of CAAP by individual users in the future,
and, combined with the Toolbox manipulation functions, has allowed CAAP to become a self-
modifiable program. With this ability, CAAP can evolve to meet individuals needs as they create
and change Toolbox files and the rules that populate them.

The user is given some aesthetic controls over CAAP output The user can look at CAAP's internal
variables representations. Toolboxes can be created, deleted, and loaded during run-time. Users
can view which Toolboxes have been loaded into the CAAP database as well as choose which

Toolboxes to load each time CAAP starts up. The dynamic use of Toolbox files presents some
interesting situations. The files can act as a medium for knowledge exchange in the future. For
example, Joe can design a plane with the Toolboxes he has built over time. He can then add
Mary's rules to his personal Toolbox, and redesign his plane in order to discover how Mary's
know-how can improve his model. Such an interactive exchange of information could be very
useful, especially in an teaching environment.

Consistency Maintenance and The Availability of Several Routines to
Calculate One Variable

There are several different methods available to estimate almost any of the parameters used in
airplane design. Different sources will quote different methods, each with its own result. A

consistent method for routine execution is needed. When there is more than one equation or routine
available to calculate a given parameter, CAAP will select the most advanced one for which all of
the input variables have been determined. For example, the airplane drag coefficient can be
calculated using equation (1) or with a drag build-up.

A

Ct." = Ct. A +[2(A + 4)/(A + 2)]

Ct, = lift curve slope for a finite lifting surface

Ct, = section lift curve slope

A = aspect ratio

(1)

If the components of the plane have been def'med, the latter, more advanced drag estimation
method will be used. If the components have not yet been def'med, the former, simpler method will
be used. Importantly, once the components have been defined, the LHS of the drag build-up rule
will be satisfied and CAAP will recalculate the drag based on the more advanced drag build-up. All
calculations are based on the most advanced routine available, due to the rule based programming
implementation chosen for CAAP.

Rule "advancedness" will be represented by a priority associated with each rule. This priority is
stored in a "rulepriority" function in CAAP's core program. It is presently used to ensure that the
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Inference Engine sees more "advanced" rules more quickly than it sees more primitive rules.

Rulepriority is used by the RWU to set rule saliences during system initialization. This procedure
improves program efficiency by decreasing the likelihood that a particular variable will be
calculated many limes by successively more advanced routines when a very advanced one could
have done the job originally. Rule pdoritization also allows the user to be confident that the crude
initial estimates used in the Initial Sizing Toolbox will not be used in the final configuration. As
soon as the airplane begins to take shape, the Initial Sizing Toolbox's estimates will be replaced

with more advanced values 1.

If two methods are similarly "advanced", one method will be chosen over the other arbitrarily, but
not randomly. If the designer has a preference as to which method is used by CAAP, he or she can

specify this to the package. The "mlepriority" function alleviates the need for addressing the
situation when two expert recommendations agree. Either they will have different priorities, or
their location on the agenda will determine which is fired.

Consistency Maintenance and Parameter Modifications

During the design process, configurations are created and analyzed. If the analysis shows a given
configuration to be inadequate in some way, the rules within the Expert run-time module will
modify one of the design parameters of the given configuration, in effect creating a new
configuration. Until the effects of this single modified parameter have been propagated throughout
the airplane, the configuration will be inconsistent. In another scenario, an advanced routine might
recalculate a design parameter previously calculated by a more primitive routine. Again, until the
effects of this change have been propagated throughout the system, an inconsistent configuration
will exist. The solution to this problem follows.

Consistency maintenance will be accomplished in two ways. When a rule within the Expert run-
time module modifies an airplane design parameter, it will have to do so in a "responsible" manner.

For example, suppose the Expert rule, for an "expert" reason, d_ides that tl]e as .l_Ct ratio of the
wing needs to be changed. If it simply changes the aspect ratio, me span anoJor wing area will be
inconsistent. Therefore, the Expert rule will have to also change the span or the wing area. The rule
could, for example, adjust the aspect ratio while keeping the wing area constant. In other words,
the Expert rule will have to look at the input variables that determine the value of the design
parameter and modify them so that they are consistent with the new value of the changed variable.

The second consistency maintenance procedure will be based on computational paths. Figure 4

presents a diagram of a hypothetical set of computational paths. Each box on the diagram
represents a variable. The directed connections represent the dependency of a variable on the value
of other variables.

Suppose that the variable in the shaded box has just been redefined, perhaps by a rule from the
Expert run-time module or by an advanced estimation routine. The value of every box
"downstream" of the shaded box is now inconsistent. The "downstream" variables are represented

by the presence of an "X" in the variable box. The "downstream" variables need to be recalculated
as if they had never been determined in the fhst place. Each rule will have access to the list of
variables which depend on the variable in the shaded box (i.e. X1 in this example). This list is
stored in instances of the RULE_INFORMATION class, introduced in the Rule Writing Utility

lTnis does not necessarily have to occur, if one is not careful. It would be possible for the airplane to be presented

as a final product without enough of it having been calculated to replace the Initial Sizing Toolbox's estimates. This
would be an absurd situation, and it would result in problems. CAAP will not present a plane to the user unless a
minimum set of parameters have been calculated to a sufficient level of "advancedness". This way, no Initial Sizing
Toolbox estimates will make their way to the user.
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section. The rule will erase, or undefine 2, all of the variables that depend on the changed variable
(i.e. it will undefme X1). The Toolbox will then undefine all of the variables that depended on

those variables, and so on until the there are no more dependent variables to undefine (i.e. X2, X3,
.... X6). This systematic undefining is called the "downstream" erasure procedure. It has been

coded as part of the "assign" routine that is used for all variable assignments. Every rule must use

the "assign" routine. After a "downstream" erasure, the other rules in CAAP will automatically
recalculate the undefined "downstream" variables. This will occur since the LHS of CAAP rules is
satisfied when the input variables for the rule are undefined.

A problem with the method of consistency maintenance presented in Figure 4 will arise if any
loops exist within the computational paths. A discussion of this problem is beyond the scope of
this paper, and the problem has only been partially solved. A full solution to the "Loop Problem" is
one of the major remaining issues facing CAAP.

Practical Limitations

The future of CAAP will focus on three different areas: the core program, the Toolboxes, and the
user interface. The essentials of the core program have been entirely written. Some extra
functionality has also been added to the program. Nonetheless, there is always room for
improvement and CAAP is by no means complete. Among the pieces of code not yet written is a
numerical optimizer. Such code could provide CAAP with a way to make "expert"

recommendations when no rules from the Expert run-time module apply to a given configuration.
If no rules exist to help, CAAP could turn to numerical optimization methods in order to determine

what changes to make to a configuration in order to make it meet all user and FAR requirements. A
simultaneous equation solver could significantly facilitate solving the airplane design problem.

The Toolbox fries need to receive a significant amount of data. Proof of study Toolbox files have
been implemented and successfully tested, but there remains a lot of data to input in order to fully
design an airplane. The graphical user interface ran into difficulties associated with system level
Macintosh programming. Finding an alternative to friendly user interactions will be a priority for
CAAP in the future.

The fast category of plane that CAAP should be able to completely design will be the light, general
aviation, non-acrobatic, single engine aircraft. The graphics for displaying the airplane ate next on

the implementation list. Eventually, trend studies and increased user involvement in the design
process could be added. For example, if the user wished CAAP to produce several final designs
instead of one, this could be done. If the user wished to watch CAAP fire one rule at a time, this

could be done. A utility could be added to allow users to see which rules are firing at any given
time. This would provide the user with a better "feel" for how the package is going about
designing their airplane.

Conclusion

A firm theoretical foundation has been developed for CAAP. The problem of designing an airplane
has been laid out and implemented using rule based, object oriented, and procedural programming
paradigms. Rule based programming enables CKAP to capture expert knowledge and to mimic the
potentially iterative nature of preliminary airplane design. Object oriented programming handles the
voluminous, complex, and hierarchically arranged data produced during airplane design.

2CLIPS 6.0 no longer supports undefined slot values. It is necessary to have such reserved values for airplane
variables that may take on a range of values. In order to satisfy the LHS's of any of the rules, the LHS's must
contain tests for variables to see ff they have not yet been calculated, that is that they are under'reed. A typical
undefined value is -le-30 for a floating point variable.
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Procedural programming is used to implement the actual analysis routines necessary for

engineering design. CAAP has realized core program implementation and proof-of-concept .
Toolbox file creation and test. CAAP can begin designing airplanes and awaits the addition ot more

data in order to be able to complete the design process. CAAP is still in the developmental phase.
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Figure 1 - Engine Classifications in CAAP
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CAAP Core Program controls all run-time modules
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Figure 2 - System Architecture
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Main Menu

....... .m

I)Createan airplane

2) Modify requirementsor plane

3) Analyze airplanes

4)Saveanairplanetodisk
5) Load an airplanefrom disk

6)Look atanairplane
7) Look atslotdependencies
8)Add a ruletothe database

9) Look atinternalvariablerepresentation
I0)Manipulam Toolboxes
Il)Miscellaneous

12) Quit

Please choose an option (0 to reprint menu)>

Figure 3 - CAAP Main Menu

Figure 4 - Consistency Maintenance Example

313



References

1. Newman, D., and K. Stanzione. Air_raft Configuration Design Code Proof-Of-Concept: Design
of the Crewstation Subsystem. Proc. of the AIAA Aircraft Design Systems and Operations
Meeting. 23-25 Sept. 1991. Baltimore: AIAA paper No. 91-3097, 1991.

2. Fulton, R. E., and Yeh Chao-pin. Managing Engineering Design Information. Proc. of the
AIAA/AHS/ASEE Aircraft Design, Systems and Operations Conference. 7-9 Sept. 1988. Atlanta:
AIAA paper No. 88-4452, 1988.

3. Roskam, Jan, and Seyyed Malaek. "Automated Aircraft Configuration Design and Analysis."
SAE Technical Pa_r Series No. 891072 (1989): General Aviation Aircraft Meeting & Exposition
(Wichita, KS), 1989.

4. Kroo, I., and M. Takai. A Ouasi-Procedural. Knowledge-Based System for Aircraft Design.
Proc. of the AIAA/AHS/ASEE Aircraft Design, Systems and Operations Meeting. 7-9 Sept. 1988.

Atlanta: AIAA paper No. 88-4428, 1988.

314



Session 6B: Prototyping and Rule Generation/Revision Extensions

I I ) I I I I II I II

Session Chair: Bebe Ly





N95" 19760 ....

RULE BASED DESIGN OF CONCEPTUAL MODELS FOR FORMATIVE EVALUATION/9
V-

Loretta A. Moore*, Kai Chang*, Joseph P. Hale*, Terri Rester +, Thomas Rix*, and Yaowen Wang*

*Computer Science and Engineering

Auburn University

Auburn, AL 36849

(205) 844 - 6330

moore@eng.auburn.edu

*Mission Operations Laboratory

NASA Marshall Space Flight Center

MSFC, AL 35812

(205) 544-2193

joe.hale@ msfc.nasa.gov

ABSTRACT

A Human-Computer Interface (HCI) Prototyping Environment with embedded evaluation capability
has been investigated. This environment will be valuable in developing and refining HCI standards
and evaluating program/project interface development, especially Space Station Freedom on-board

displays for payload operations. This environment, which allows for rapid prototyping and evaluation
of graphical interfaces, includes the following four components: (1) a HCI development tool, (2) a
low fidelity simulator development tool, (3) a dynamic, interactive interface between the HCI and the
simulator, and (4) an embedded evaluator that evaluates the adequacy of a HCI based on a user's

performance. The embedded evaluation tool collects data while the user is interacting with the system
and evaluates the adequacy of an interface based on a user's performance. This paper describes the
design of conceptual models for the embedded evaluation system using a rule-based approach.

INTRODUCTION

Formative evaluation is conducted through usability studies. Given a functional prototype and tasks

that can be accomplished on that prototype, the designer observes how users interact with the proto-
type to accomplish those tasks in order to identify improvements for the next design iteration.
Evaluation of the interaction is measured in terms of specific parameters including: time to learn to
use the system, speed of task performance, rates and types of errors made by users, retention over time,
and subjective satisfaction [4]. Analysis of this information will assist in redesign of the system.

The conceptual model of a designer is a description of the system and how the user should interact

with it in terms of completing a set of tasks [2]. The user's mental model is a model formed by the
user of how the system works, and it guides the user's actions [1]. Most interaction problems occur
when the user has an inaccurate model of the system or when the user's model of a system does not
correspond with the designer's conceptual model of the system. The evaluation approach which will
be discussed in this paper evaluates the user's mental model of the system against the designer's
conceptual model.

A rule-based evaluation approach, implemented using CLIPS, is used to develop the conceptual
model. The model outlines the specific actions that the user must take in order to complete a task.
Evaluation criteria which are embedded in the rules include the existence of certain actions, the se-
quencing of actions, and the time in which actions should be completed. Throughout the evaluation

process, user actions are continuously associated with a set of possibly changing goals. Once a goal
has been identified, the user's action in response to that goal are evaluated to determine if a user has

performed a task correctly. Tasks may be performed at three levels: expert, intermediate, and novice.

This research is supported in part by the Mission Operations Laboratory, NASA, Marshall Space Flight Center,
MSFC, AL 35812 under Contract NAS8-39131, Delivery Order No. 25. The views and conclusions contained
in this document are those of the authors and should not be interpreted as representing the official policies,
either expressly or implied, of NASA.
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The dynamic relationship between the evaluation tool and the user environment allows the simulation
director to constantly introduce new goals that need to be responded to. This paper will discuss the

approach of rule-based conceptual modeling and will provide an example of how this approach is used
in the evaluation of a graphical interface of an automobile.

ARCHITECTURE OF THE HCi PROTOTYPING ENVIRONMENT

The Human-Computer Interface Prototyping Environment with Embedded Evaluation capability is
designed to allow a developer to create a rapid prototype of a system and to specify correct procedures
for operating the system [3]. The f'_t component of the architecture is the Graphical User Interface
(GUI) development tool. This tool allows the designer to graphically create the interface of the system
and specify a data source for each object within the display. The simulator tool provides the capability
to create a low-fidelity simulation of the system to drive the interface. The embedded evaluation tool

allows the designer to specify which actions need to be taken to complete a task, what actions should
be taken in response to certain events (e.g., malfunctions), and the time frames in which these actions
should be taken. Each of these components is a separate process which communicates with its peers

through the network server. Figure 1 shows the architecture of the HCI Prototyping Environment.
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Figure 1 - Architecture of the HCI Prototyping Environment

During execution of the system, the interface objects send and receive data and commands to the
simulator by way of the data server and the simulator provides realistic feedback to the interface based
on user inputs. The server sends the embedded evaluation tool the actions which the user has taken,
all events and activities which have occurred, and the times associated with these items. The embed-
ded evaluation tool analyzes the actions which have been performed by the user, that is, the user's

model of the system, against the predefined conceptual model of the designer. The system identifies
which tasks were completed correctly, or not, and provides data to the designer as to the points in the
interaction in which the user's model of the system did not correspond to the designer's conceptual

model of the system.
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In order to evaluate the architecture, an automobile system was prototyped in the environment. An
automobile was chosen because it has sufficient complexity and subsystems' interdependencies to
provide a moderate level of operational workload. Further, potential subjects in the empirical studies

would have a working understanding of an automobile's functionality, thus minimizing pre-
experiment training requirements. The conceptual model which will be described in this paper is that
for the automobile prototype. Before describing the rule based conceptual model, we will first discuss
changes made to integrate CLIPS into the HCI Prototyping Environment.

THE GRAPHICAL USER INTERFACE EVALUATION TOOL (GUIET)

The goal of GUIET is to provide for dynamic evaluation of user actions within the HCI Prototyping
Environment. Using GUIET, the process of formative evaluation has more flexibility and takes less
time for analysis. The main feature is that the evaluation of most of the participant's actions are
automated. The evaluation is performed at runtime by an expert system. The knowledge base of the
system contains the designer's conceptual model, of how he/she thinks the user should interact with

the prototyped system. Because the knowledge base is not hard coded into the application, it can be
dynamically changed according to the needs of the evaluator. This provides the flexibility to evaluate
different interfaces with the same evaluation criteria or one interface with different evaluation criteria.

This design saves time because the data is automatically collected and analyzed based on the rule
based conceptual model. If a new interface is prototyped, the only change that needs to be made with
GUIET is changing the knowledge base.

In addition to the rule-based modeling design, GUIET provides a graphical interface and communi-
cation capabilities to CLIPS. In order to be integrated with the existing architecture, GUIET needs to
receive information from both the interface and the simulator. The server sends the messages that are
passed between the GUI tool and the simulator tool to GUIET. This is done using datagram sockets
for the interprocess communication. The messages are in the form:

(newfact 193.0 I>S Message SetVariable gear 2)

where newfact is a string used for pattern matching for CLIPS rules, 193.0 is the time stamp, I>S states
that communication is from the interface to the simulator, Message is the type of communication,
SetVariable represents that the value of a variable is being set by the user, gear is the variable name,
and 2 is the variable value.

Although this is the natural way to assert facts into CLIPS, the state for the car is stored not as a set of
facts, but as one fact with many attribute/value pairs. Before the new fact is evaluated it is translated

into the form of a fact. This translation is done by a set of translation rules. An example of a transla-
tion rule is:

; GEARS

(defrule trans_gear

?newfact <- (newfact ?time ?direction ?type ?action gear ?value)
?state <- (car_state)

->

(modify ?state (gear ?value))

(retract ?new_fac0

(bind ?*current_tag* (+ ?*current__tag* 1))

(assert (action (type gear) (value ?value) (time ?time)

(clock__tag ?*cummt_tag*) ))
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Another set of rules perform the evaluation of the user's actions, which are described in the next
section. The last section describes a graphical interface which has been created for CLIPS.

CONCEPTUAL MODEL FOR THE AUTOMOBILE PROTOTYPE

The tasks which the user are asked to perform with the prototype can be divided into two categories:

driving the car (i.e., using the controls) and responding to events (e.g., environmental and mainte-
nance). The tasks measured include:

• Starting the car

• Driving forward (including changing gears)

• Driving backward

•Tuming

• Stopping (at stop signs, lights, etc.)

• Parking the car

• Increasing and decreasing speed [Responding to speed limit changes]

• Driving uphill and downhill [Responding to hill events]

• Performing maintenance [Responding to maintenance events]

• Responding to environmental conditions

The events which can occur while the user is driving include environmental condition events (e.g.,

rain, snow, fog, and clear weather), time of day events (e.g., day and nigh0, terrain changes (uphill and

downhill), speed limit changes, and maintenance problems (e.g., gas, oil, battery, alternator, and en-
gine). In addition to the events, the participant is given a set of instructions that must be followed.
These are in the form of driving directions (e.g., drive 5 miles north and park the car).

Driving the car consists of manipulating graphical objects on the screen. For each of the tasks de-
scribed above, the designer has determined a set of correct actions that must be made to complete the
task. For example, the actions which must be taken for starting the car include:

1. Lock the seatbelt

2. Release emergency brake

3. Depress the brake

4. Depress the clutch

5. Put the gear in neutral

6. Turn the key on

Task correctness is evaluated based mainly on three evaluation criteria: the existence of certain ac-

tions, the sequencing of actions, and the time associated with the completions of the actions or task.
An integer clock counter is used to indicate the action or event sequence. In the beginning of evalu-
ation, the clock is reset to zero. Every subsequent action taken by the driver would increment the clock
by one. Action sequence is important for many driving maneuvers. For example, clutch must be
engaged before shifting gears. The evaluation process evaluates the correctness and effectiveness of
a driver's interactions with the graphical user interface. User performance can be classified into three
levels for most tasks - expert, intermediate, and novice. There may also be no response to a task. A
counter is designated for each performance level. Every time a sequence of user actions is classified

at a particular level, the associated counter will be incremented by one. The purpose of the evaluation
is not to classify or evaluate users, but to evaluate the interface. The classification of users into cate-

gories is done to identify the level at which the users are interacting with the system. The goal is to
have most if not all interactions at what the designer would consider the expert level. If users are not

interacting at this level, it is the interface which must be enhanced to improve user performance.
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In theCLIPS implementationa fact templateis usedto representthecarstatesanddriving scenarios.
Thefollowing showsthetemplatefor car-states:

(deftemplatecar_states"Variablesused in the car interface',

(slot turnsignal)

(slot brake)

(slot emer_.brake_on)

(slot clutch)

(slot key)

(slot gear)

(slot throttle)

(slot speed)

(slot seatbelt)

(slot wipers)

(slot lights)

(slot fog._lights)

(slot oil)

(slot gasoline)

(slot engine_temp)

(slot battery)

(slot alternator_ok)

(slot rpm)

(slot terrain)

(slot day)

(slot weather)

(slot speed_limit)

) ;car template

Associated with each action taken by the user, a template is defined as:

(deftemplate action "Action taken by the user on the interface"

(slot type)

(slot value)

(slot time)
(slot clock_tag)

;action template

;action type
;action value

;action time

;action sequence

An evaluation rule is designed for each performance level. After a sequence of actions is completed,
it will be evaluated based on the rules for the three performance levels. However, only one of the rules
would succeed. The rules are organized in a way that the expert level would be tried first, then the

intermediate level, and then the novice level. Once a rule has been successfully fired, this sequence of
actions will be discarded. The prioritization of these rule is achieved through the salience values of
CLIPS.

The following examples describe a portion of the evaluation process for starting the engine.

; Rules for Starting the Engine

(defrule expert_start_engine "Expert level starting engine"

; salience value highest among the four performance evaluation rules
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=>

(declare (salience 3))

; This part of the rule ensures that all of the actions have occurred.

; the fin'st action putting the seatbelt on

?fl <- (action (type seatbelt) (value 1) (clock_tag ?0)

; next action is about the emergency brake

?f2 <- (action (type emer__brake_on) (value 0) (clock_tag ?tl))

; next action is brake on

?f3 <- (action (type brake) (value 1) (clock_tag ?t2))

; next action is clutch depressed

?f4 <- (action (type clutch) (value 1) (clock_tag ?t3))

; next action is gear neutral

?f5 <- (action (type gear) (value 0) (clock_tag ?t4))

; next action is key on

?f6 <- (action (type key) (value 1) (clock_tag ?t5))

7t7 <- (noresponse start_engine)

; To ensure that the actions occurred in the proper order the following

; test is performed. The proper sequence is lock seatbelt, release

; emergency brake, depress brake, depress clutch, select neutral gear,

; turn key, release brakes and release clutch.

(test (= (+ ?t 1) ?tl))

(test (= (+ ?t 2) ?t2))

(test (- (+ ?t 3) ?t3))

(test (= (+ ?t 4) ?t4))

(test (= (+ ?t 5) ?t5))

; The following assertion aids in keeping track of whether a response

; was made or not_

(assert (response start_engine))

; effects of actions considered, therefore removed from the fact base

(retract ?fl ?f2 ?f3 ?f4 ?f5 ?f6 ?f'/)

; increment expert level count

(bind ?*expert count* (+ ?*expert_count* 1))

(printout evaluation "TASK: starting the engine" crlf)

(printout evaluation "TIME: "(- (integer (time)) ?*start_time*) " seconds" crlf)

(printout evaluation "# ERRORS: 0" crlf crlf)

) ; expert_start_engine

(defrule intermediate_start_engine "Intermediate level starting engine"

; salience value smaller than expert level, but higher than novice level

(declare (salience 2))
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; This part of the rule ensures that all of the actions have occurred.

; the first action putting the seatbelt on

?fl <- (action (type seatbelt) (value 1) (clock_tag ?O)

; next action is about the emergency brake

?f2 <- (action (type emer_brake_on) (value 0) (clock_tag ?tl))
; next action is brake on

?f3 <- (action (type brake) (value 1) (clock_tag ?t2))

; next action is clutch depressed

?f4 <- (action (type clutch) (value 1) (clock_tag ?t3))
; next action is gear neutral

?f5 <- (action (type gear) (value 0) (clock_tag ?t4))
; next action is key on

?f6 <- (action (type key) (value 1) (clock_tag ?t5))

?f7 <- (noresponse start_engine)

; The following test is to see what sequence the events occurred in.

; The proper sequence is: key turned after the clutch is off, clutch off

; after the brake is on, and seatbelt is on before the key is turned.
; Additional actions may be done in between the needed actions.

; For example, turning on the fog lights.

=>

(test (> ?tl ?t))

(test (> ?t2 ?tl))

(test (> ?t3 ?t2))

(test (> ?t4 ?t3))

(test (> ?t5 ?t4))

; The following assertion aids in keeping track of whether a response
; was made or not

(assert (response start_engine))

; effects of actions considered, therefore removed from the fact base

(retract ?fl ?f2 ?f3 ?f4 ?f5 ?f6 ?fT)

; increment intermediate level count

(bind ?*intermediate_count* (+ ?*intermediate_count* 1))

(printout evaluation "TASK: starting the engine" crlf)

(printout evaluation "TIME: " (- (integer (time)) ?*start_time*) " seconds" crlf)
(printout evaluation "# ERRORS: 1 or more" crlf)

(printout evaluation "EXPLANATION: Extra events occurred in the sequence." crlf )

) ;intermediate_start_engine

(defrule novice_start_engine "Novice level starting engine"

; salience value smaller than intermediate level, but higher than no response level
(declare (salience 1))
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=>

; This part of the rule ensures that all of the actions have occurred.

; the first action putting the seatbelt on

?fl <- (action (type seatbelt) (value 1) (clock_tag ?t))

; next action is about the emergency brake

?f2 <- (action (type emer_brake_on) (value 0) (clock_tag ?tl))

; next action is brake on

?f3 <- (action (type brake) (value 1) (clock_tag ?t2))

; next action is clutch depressed

?f4 <- (action (type clutch) (value 1) (clock_tag ?t3))

; next action is gear neutral

?f5 <- (action (type gear) (value 0) (clock_tag ?t4))

; next action is key on

?f6 <- (action (type key) (value 1) (clock_tag ?t5))

7t7 <- (noresponse start_engine)

; The events do not have to occur in any particular order. They just

; all have to occur.

; The following assertion aids in keeping track of whether a response

; was made or not

(assert (response start_engine))

; effects of actions considered, therefore removed from the fact base

(retract ?fl ?f2 ?f3 ?f4 ?f5 ?f6 ?f7)

; increment novice level count

(bind ?*novice_count* (+ ?*novice_count* 1))

(printout evaluation "TASK: starting the engine" crlf)

(printout evaluation "TIME: " (- (integer (time)) ?*starttime*) " seconds" crlf)

(printout evaluation "# ERRORS: 1 or more" crlf)

(printout evaluation "EXPLANATION: Events occurred out of sequence." crl0

) ;novice_start_engine

(defrule no_response_start_engine "No response to starting engine"

; No salience value is assigned therefore it has the default value of 0

; Check to see if there was an attempt to start the engine

(noresponse start_engine)

=>

; Check to see if the time limit has exceeded for starting the engine

(test (> (integer (time)) (+ ?*timeout* ?*start_time*)))

; increment no response count

(bind ?*no_response_count* (+ ?*no_response_count* 1))

(printout evaluation "No response to starting the engine" crlf)

324



(printout evaluation"TIME: " (- (integer(time))?*start_time*)"seconds"crlf calf)

) ;no_response_start_engine

Rulesfor different tasks may contain different evaluation criteria. It depends on the designer's con-
ceptual model of how he/she feels the task needs to be completed.

GRAPHICAL INTERFACE FOR CLIPS

A graphical interface was created for CLIPS using the Motif toolkit. The purpose of this interface is
to provide the human evaluator a graphical means by which to use CLIPS. The main window of
GUIET is composed of two areas. The top area is used for CLIPS standard input and output, and the
bottom area displays any error or warning messages from CLIPS. These areas receive their input from

a series of CLIPS I/O router functions. The menu bar for this window provides the following options:
System, Network, CLIPS, Rules, and Facts. The system pulldown provides functions for quitting the
application and for bringing up a window for entering participant information. The network pulldown
allows the evaluator to send a selection of messages to the server (e.g., connect and disconnect). The
CLIPS pulldown supports functions that affect the entire expert system, such as loading the evaluation
rule base, resetting the expert system to its initial settings, running, clearing, or accepting input. De-

bugging functions that relate to the rules, such as watching/unwatching the rules fire or viewing/editing
existing rules, can be accessed through the rules pulldown. Debugging functions that relate to the facts
in the expert system are provided under the facts pulldown.

The user information window accessed under the system pulldown allows the evaluator to enter data
relevant to the current participant and system being evaluated. The top section of this window dis-

plays the expert system's evaluations. There is an I/O router which handles the display for the
evaluation window and is accessed through the printout statement within the rules. The bottom area

is a text area in which the evaluator can enter comments or observations about the participant's
session. The window provides options for saving, printing, and cancelling information.

CONCLUSION

The rule-based design of conceptual models enables the iterative process of design and evaluation to
proceed more efficiently. A designer can specify user performance criteria prior to evaluation, and the
system can automatically evaluate the human computer interaction based on the criteria previously
specified. In order to evaluate the system which has been designed, a study is being planned which
will evaluate user performance (using the rule based system developed) using a good interface and a
bad interface. The hypothesis is that the good interface will produce more user responses at the expert
level, and the bad interface will produce less acceptable responses.
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Abstract

Many=CLIPS rule-bases contain one o1"more rule groups that 1)erfl:)rm classification.

In this paper we describe CLIPS-Induce, an automated system for the creation of a

CLIPS classification rule-base from a set of test cases. CLiPS-Induce consists of two

components, a decision tree induction component and a CLIPS l)roduction extraction

component. ID3 [1], a popular decision tree induction algorithm, is used to induce a
decision tree from the test cases. CLIPS production extraction is accomplished through

a top-down traversal of the decision tree. Nodes of the tree are used to construct query

rules, and branches of the tree are used to construct classifi('a, ti(,ll r_lh's. The lea.rlwd

CLIPS productions may easily be incorporated into a large ('LIPS svst(,m that p('rfurlll

tasks such as accessinga d'.atabase or disl)laying information.

INTRODUCTION

Many CLIPS rule-bases contain one or more rule groups that perform classification. In

this paper we describe CLIPS-Induce, an automated system for the cr('ati()n of a ('L[PS
classification rule-base from a set of test cases. The rule-base created by ('LIPS-Ind_we

consists of two sets of rules, a set of user query rules to ask the user for any missing

information necessary to perform classification, and a set of cla.ssifica.tion rules that is

used to make the classification.

Ill the remainder of the paper, a detailed descriptioll of CLiPS-Induce and ID3 will be

presented, followed by an analysis of CLiPS-Induce and list of potential extensions.

DESCRIPTION ....

In this section a description of C'LIPS-Induce will be given, along with an example of

its usage on a real-world problem, the Sl)ace Shutth' Laildillg ("(mtml Im,l,h'.l. The

goal of this classification proMem is to determine whet,l.'r l lw spa.c(' sllutt, h' sl_()_ll(.I b('

landed manually or automatically.
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CLIPS-Induce takes as input a set of test cases and returns two sets of C,LIPS rules

that perform user querying and classification. Each case is described in terms of a set

of feature-value pairs. The same set of features is used for each case. An example case

for the shuttle problem is given in Table I.

Table I: Example case from shuttle problem.

• Landing = manual

• Stability = stab

• Error =rnlll

• Sign -- nn

• Wind = tail

• Magnitude = OutOfRange

• Visibility = yes

One feature is identified as tile feature to be predicted given the values of the other

features. For the shuttle problem, the feature Landi,.g is to lye predicted in terms of

the features Stability, Error, Sign, Wind, Ma97tilude a'lzd I/i.sibility.

A decision tree is constructed from the set of cases using the decision tree construction

algorithm ID3. The tree constructed from the shuttle cases is shown in Figure 1. The

decision tree is then used to construct tile user querying and classification rule sets.

The basic organization for CLiPS-Induce to presented in Figure 2.

Decision Tree Construction

A decision tree predicts the value of Olle feature in terms of the valm's of other features.

The process by which a prediction is made using a decision tree's is dvscrib,,d below.

Using the decision tree in Figure 1, the value of the feature La1_,dm:! will l:_e predicted

for the example case shown in Table I. Starting at the top (root) uf tll_' decision tre_,

the value of the feature Visibility is checked. Because the value is Yc., the" node at the

end of the branch labeled Yes is next tested. Since the wdue for the feature Stability is

stab, the Error node is next checked. Traversal of the tree continues down the not(ss)

branch (because the value of Error is not ss), across the mm branch and finally down

the nn branch to the leaf labeled Manual. The value for the La,,diu 9 feature, predicted

by the decision tree for this case is Ma,.ual.

ID3 is a decision tree construction algorithm that buihls a decision tree consistent with

a set of cases. A high-level description of the algorithm is shown in Table II. The tree
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not(mm)
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Manual
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CAut°matic_ I Wind J

tail_'_*_k head

_Automatic_ (Manual_

Figure 1: Decision tree constructed by ID3 using the shuttle cases.

Cases

¢
Construct Decision Tree

Decision Tree

Construct User Query Rules

Decision Tree

Construct Classification Rules

UserQuery Rules

fication Rules

Figure 2: CLiPS-Induce Architecttue
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is constructed in a recursive top-down manner. At each step in tile tree's construction,

the algorithm works or] tile set of cases associated with a node i_ tile, partial tree. If

the cases at the node all have the same value for the feature t6 I,_, predicted, the nodo

is made into a leaf. Otherwise, a set of tests is eva]lmted to determille which test best

partitions the set of cases down each branch. The metric used to evaiuato the partition

made by a particular test is know as information gain (for a. more COml_lete description

of information gain and ID3, see [1]). Once a test is selected for a node, tile cases are

partitioned down each branch, and the algorithm is recursively called on the cases at
the end of each branch.

Table II: ID3 Decision Tree Construction Algorithm.

function generate_dtree(cases)

if stop_splitting(cases)

ret urn leaf_cl ass (cases);
else

best_cost := eval_examples_cost(cases);

for all tests()

cost := eval_cost(cases,test);
if cost < best_cost then

best_cost := cost;

best_test := test;

for all case_partitions(cases,best_test)

branches := branches U{generate-dtree(caso_partilio_l)}:

return (best_test,branches);

There are three types of tests that are used by (_LIPS-lmhwe to construct decision
trees:

°

.

.

Two branch feature = value test: One branch for fiature = value and a second

branch fox" feature: 7/: value.

Multi-branch feature = value test: A branch for each of the wdues that fi:ature
has.

Two branch feature: > value test: One branch for fiature > value and a second

branch for feature <_ value.

The first and second test types are used for nominal-valued features, ¢'.g. cc,h,r. Whorl'as

the third test type is used for features with r,,al or .rdered vallLes, e.g. ago _,l' sizo.
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Rule Generation

The first step in rule generation is to generate tile user query rules. The plu'pose of each

user query rule is to ask the user for the value of a particular feature. Tile user-defined

function used to ask the actual questions is shown below.

(deffunction ask-question (?question)

(format t "%s " ?question)

(read))

The query rules are generated such that they only fire when the val,,' fl_r a partiodar

feature is needed and not already available. If, for example, the wd,es for certain

features were asserted before execution of the classification rules began, query rides for

those features would never fire. Typically, user query rules and classification rules fire

in an interleaved manner.

User query rules are generated via a pre-order traversal of the tree. During the traversal,
each internal node of the tree is associated with a, unique identifier that is used to identify

the act of having visited that node during rule execution. An example user query rule,

for the Sigu node in Figure 1, is shown below.

(defrule sign-query-g773

(node node8)

(not (feature sign ?value))

=>

(bind ?answer (ask-question "What is the value of feai_N'e sign. ))

(assert (feature sign ?answer)))

The second step in rule generation is to generate the classification rule._. The purpose

of the classification rules is to traverse the decision tree along a path ['r()ln the root of

the tree to a leaf. Upon reaching the leaf, the value for tile fe,atur," to be predicted is

asserted to the fact-list. Whereas query rules are associated with intertlal llo(les in the

decision tree, classification rules are associated with branches in the tree. The two rules

for the branches from the Sign, node in Figure 1, are shown in Table Ill.

The Sign node is identified as node8. If the value for feature Sign is pp, than (node

node9) will be asserted by tile first rule. Node9 is associated with the Magn.ittLdc node.

If the value for Sign were instead nn, the value manual for the predicted feature Landing

would be asserted by the second rule. In tile later cause, because no new (node ...) fact

is asserted, execution of the user query and classification rules halts.

1m
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Table III: Example classification rules.

(defrule node8-sign-pp

?11 <- (node node8)

(feature sign pp)
=>

(retract ?n)

(assert (node node9)))

(defrule node8-sign-nn

?n <- (node node8)

(feature sign nn)
=>

(retract ?n)

(assert (feature landing manual)))

ANALYSIS

The first issue to be concerned w_th in using the (IMPS-Induce, is the time savings

relative to generating the rules by hand. For the shuttle 1)rol)lem, tire 25 rules were

generated from a set of277 cases in only a t_w seconds. For am)ther l,roble,l that deals

with predicting lymph node cancer, 87 rules were g_nerated in less than a minute. Other

problems have been observed to generate rule-bases with as ma, ny as 5(}0 rules in very

reasonable amounts of time. Civen that a set of test cases is available, (',LiPS-Induce

can save a great deal of time.

The second issue concerns the accuracy of the induced rules on new cases. This concern

has been addressed by the area of machine learning where a great deal of research has

been done on the induction of decision trees from cases. Specifically, ID3 has been

empirically shown to do well at generating decision trees that are accurate on unseen

cases. For examl)le , Figure 3 shows a learning curve for the shllttle problem. Learning

curves show the accuracy of a model (a decision tree) on unseen cases, as a f,t_,l, ion

of the number of cases used to generate the model. For 1,1u" sl,utth, i,rol)h,lll, wllcz_

only 10% of the 277 cases were used to generate the decisi.n trees, tl.' a,cllracy on tile

remaining 90% of the cases is approximately 92%. As tlu. proportion of cases increases,

the accuracy of the constructed decision trees increases.

The third and final issue concerns the availability of a sufficient numbers of cases needed

to induce an accurate set of rules (from Figure 3, the fewer the number of cases, the

less accurate is the induced decision tree). In answer to this concern, cvon if" thero are

only a small number of cases for a problem, the ruh-'-ba.se generated by ('LIPS-IItdltce

can be used as a starting point for a domain expert.
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Figure 3: Average accuracy of decision trees as a function of the proportion of the 277

cases used to construct tile decision trees. The accuracy of c,ach (h',ision tre,' is l)ased

on the cases not used to construct the tree.

EXTENSIONS

One of the ways that CLiPS-Induce could be extended wmdd I)e to take advantage

of ID3's approach for dealing with missing t_atm'e values. Currently, the rule-bases,

generated by CLIPS-Induce, halt when the user cannot enter a valtte for a required

feature. The only drawback to extending CLIPS-hMuc, e in this manner, is the increased

complexity and reduced understandability of the generated rules.

Another enhancement to CLIPS-Induce would 1)e t() use a more sophisticated ask-

question function. User-query rules could be generated that also pass tlw set of allowable

values or value type to tile ask-question function. The extra argument could provide

constraints on the allowable responses made by the user.

The third extension to CLIPS-Induce would be to allow interactive creation of decision

trees. It is often the case that an expert in the field has knowledge that co, dd hel l) in

forming a more accurate and more understandable decision tree.

CONCLUSION

In this paper, CLIPS-Induce, a C,ommon Lisp al)l)licati(m t ll_tl in(1,w('s a ('LIPS ('lassiti-
cation rule-base from a set of test cases, is described. (_ivell it set of test _'a.st's. ,h'scrihed

in terms of a fixed set of features, a decision tree is e(mstrltcted using the (lecisiom_ tree

construction algorithm, IDa. From the decision tree, two sets of r_lh's are extracted.

One set of rules, the user query rules, ask the user f()v the values of featllres neede(I to

make a classification. Tile other set of rules, the classification rules, simtdate a traversal

of the decision tree in order to make the I)redietion that the decision tl't'e wC'llld make.

' e'File rule-base formed by CLIPS-Induc can easily be embedded in rule-bases that need

classification rule groups.
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Abstract

This paper describes CLIPS-R, a theory revision system for the revision of CLIPS

rule-bases. CLIPS-R may be used for a variety of knowledge-base revision tasks, such

as refining a prototype system, adapting an existing system to slightly different op-

erating conditions, or improving an operational system that makes occasional errors.

We present a description of how CLIPS-R revises rule-bases, and an evaluation of the

system on three rule-bases.

INTRODUCTION

Considerable progress has been made in the last few years in the subfield of machine

learning known as theory revision, e.g. [1,2,3]. The general goal of this area is to create

learning models that can automatically update the knowledge base of a system to be

more accurate on a set of test cases. Unfortunately, this progress has not yet been put

into common practice. An important reason for the absence of technology transition is

that only a restricted form of knowledge bases have been addressed. In particular, only

the revision of logical knowledge bases that perform classification tasks with backward

chaining rules [4] has been explored. However, nearly all deployed knowledge-based

systems make use of forward-chaining production rules with side effects. For example,

two of the knowledge-based systems reported on at the 1993 Innovative Applications

of Artificial Intelligence use CLIPS. The remainder of the knowledge-based systems use

ART, a commercial expert system that has many of the same features as CLIPS.

There are a variety of practical reasons why the production rule formalism is preferred

to the logical rule formalism in deployed expert systems. First, production rules are

suitable for a variety of reasoning tasks, such as planning, design and scheduling in ad-

dition to classification tasks that are addressed by logical rules. Second, most deployed

knowledge-based systems must perform a variety of computational activities such as

interacting with external databases or printing reports in addition to the "reasoning"

tasks. The production system formalism allows such procedural tasks to be easily

combined with the reasoning tasks. Third, the production rule systems tend to be

computationally more efficient. The production systems allow the knowledge engineer
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to have more influence over the flow of control in the systems allowing the performance

to be fine tuned. Whereas in a logical system, the rules indicate what inferences are

valid, in a production system, the rules indicate both which inferences are valid and

which inferences should be made at a particular point.

The revision of CLIPS rule-bases presents a number of challenging problems that have

not been addressed in previous research on theory revision. In particular, rules can

retract facts from working memory, display information, and request user input. New

opportunities to take advantage of additional sources of information also accompany

these new problems. For example, a user might provide information that a certain item

that was displayed should not have been, or that information is displayed in the wrong
order.

In the remainder of this paper, we give an overview description of CLIPS-R, a system
for revising CLIPS rule-bases and an evaluation of CLIPS-R on three rule-bases.

DESCRIPTION

CLIPS-R has an iterative refinement control structure (see Figure 1). The system
takes as input a rule-base and a set of instances that define constraints on the correct

execution of the rules in the rule-base. While there are unsatisfied constraints CLIPS-R

heuristically identifies a subset of similar instances as problem instances (instances with

many unsatisfied constraints). Using the problem instances, a set of potential repairs

to the rule-base are heuristically identified. Each of these repairs is used to temporarily

modify the rule-base, with each modified rule-base evaluated over all instances. The

repair that improves the rule-base most is used to permanently modify the rule-base.

If no repair can increase the evaluation of the rule-base, than the addition of a new

rule through rule induction is attempted. If rule induction cannot generate a rule that

can improve the evaluation of the rule-base, the revision process halts and the latest

rule-base is returned. The process of modification and rule induction continues until all

constraints are satisfied or until no progress is made.

Instances

Each instance has two components: initial state information and constraints on the

execution of the rule-base given the initial state. The initial state information consists

of a set of initial facts to be loaded into the fact-list before execution of the rule-base,

and a set of bindings that relate input function calls to their return values. From the

automobile diagnosis rule-base, the function ask-question with argument "What is the

surface state of the points?" may return "burned" for one instance and "contaminated"

for another instance. The set of constraints on the execution of the rule-base includes

constraints on the contents of the final fact-list (the final fact-list is the fact-list when

execution of the rule-base halts), and constraints on the ordering of observable actions

such as displaying data or asking the user questions.
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Repairs

Evaluate Potential Repairs

No decrease in error

Induce New Rule

No decrease in error

Figure 1: System Organization.

Rule-Base Evaluation

The metric used to evaluate of the rule-base (relative to a set of instances) is the mean

error rate across all instances. The error rate for an instance is the percentage of

constraints unsatisfied by the execution of the rule-base. An instance is executed in the

following manner.

• Reset the rule-base.

• Assert any initial facts.

• Associate bindings with user-defined functions.

• Execute the rule-base until either the agenda is empty or until a user-defined rule

execution limit is reached.

During execution of the rule-base for a particular instance, trace information is recorded

that is used to determine how many of the constraints associated with the instance are

unsatisfied.

Repair Operators

The set of potential repairs to a rule-base are, LHS specialization and generalization (the
addition and deletion of conditional elements to the LHS of a rule), action promotion

and demotion (the decrease and increase of the embeddedness of an action within

if-than-else function, salience modification, assert and retract addition and deletion,

observable action modification, rule deletion and rule induction.
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Repair Identification

Below is a brief example of how repairs for a particular problem instance are identified.

For a more thorough description of these and other aspects of CLIPS-R, see [5]. Assume
a problem instance is identified that has an error because the final fact-list contains the

extra fact (repair "add gas"). The heuristics that suggested repairs for an extra fact
are described below.

• The action within the rule that asserted this fact should be deleted.

• Add a retract for the fact to a previously fired rule.

• For each unfired rule in the rule-base that has a retract that could retract this

fact, identify repairs that would allow that rule to fire.

• Identify repairs that could cause the rule that asserted the fact to not fire.

EMPIRICAL ANALYSIS

A series of experiments were designed to analyze various characteristics of CLIPS-R.

With the first rule-base, automobile diagnosis (distributed with CLIPS), we perform ex-

periments to determine how well CLIPS-R does at increasing the accuracy of randomly

mutated rule-bases. For the second domain, we deal with the nematode identification

rule-base. With this rule-base, we show how CLIPS-R can be used to extend a rule-base

to handle new cases. For the final rule-base, student loan [2], a problem translated from

PROLOG to CLIPS, we chow that CLIPS-R is competitive with an existing revision

system, FOCL-FRONTIER [6], that is designed to revise the Horn clause rule-bases.

Automobile Diagnosis Rule-Base

The auto diagnosis rule-base is a rule-base of 15 rules. It is an expert system that prints

out an introductory message, asks a series of questions of the user, and prints out a

concluding message including the predicted diagnosis.

Cases were generated from 258 combinations of responses to the user query function.

Each instance consisted of a set of answers for each invocation of the query function

as initial state information, a single constraint on the final fact-list and an ordering

constraint for the sequence of printout actions. The target constraint for each instance

was a positive constraint for a repair fact, e.g. (repair "Replace the points").

Execution of an instance for the auto diagnosis rule-base consisted of clearing the fact-

list, setting the bindings that determine the return values for each function call instance

(to simulate user input for the user query function) and executing the rule-base to

completion. The bindings that associate function calls to their return values allowed

an otherwise interactive rule-base to be run in batch mode. This is necessary because
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Figure 2: Target Error After Revision as a function of Target Error Before Revision.

no user would be willing to answer the same questions for 50 instances on different

variations of the rule-base.

The experiments performed using the auto diagnosis rule-base were designed to deter-
mine how well CLIPS-R could do at revising mutated versions of the correct rule-base.

Mutations consisted of extra, missing or incorrect conditional elements or actions and

incorrect rule salience values. Two sets of 20 mutated rule-bases were randomly gener-

ated with one set of rule-bases having only a single mutation and the other set having

three mutations per rule-base. Each mutated rule-base was revised using a random

set of 50 training instances. The remaining instances were used for testing. Figure 2

contains a scatter plot showing the initial error of each mutated rule-base and the final

error after revision of the rule-base.

An analysis of the scatter plots in Figure 2 shows that, for the most part, CLIPS-R

is able to reduce the error rates of the mutated rule-bases (points below the diagonal

indicate a decrease in error). For one mutation, the average rule-base error was 11.2%

before learning and 0.7% after learning. With three mutations, the error before learning

was 28.0% and after learning it was 7.2%.

Nematode Identification Rule-Base

The second rule-base, nematode identification (a nematode is a class or phylum of

worm), has 93 rules. The intent in presenting this rule-base, is show an example of
how CLIPS-R can be used to extend a classification rule-base to handle new cases. The

basic requirements for this problem are a rule-base, a set of cases that the rule-base

correctly classifies, and a set of cases that are not correctly classified by the rule-base.

For the nematode rule-base, because no cases were provided with the original rule-base,

a set of 50 cases were generated by interactively running the rule-base over different
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responsesto the user query function. In order to simulate a rule-basethat is in need
of extension, two errors were introduced into the rule-base. Specifically,one rule was
deleted (a rule that would normally assert the classificationfor two of the 50 cases),
and a secondrule waschanged,so that it fired and assertedan incorrect classification
for the two casesno longerclassifiedby the deleted rule, seeTable I. The two casesthat
aremisclassifiedby the mutated rule-base,are the casesthat CLIPS-R needsto extend
the rule-baseto cover.

Table I: Mutated Rules.

(defrule Pratylenchus
?fl <- (esophagus-glands-overlap-intestineventrally)
?f2 <- (ovary l)
=>

(retract ?fl)

(retract ?f2)

(assert (nematode pratylenchus))

(assert (id-criteria "1. esophagus glands overlap intestine ventrally."

"2. ovary 1."

"3. head-shape low and flat.")))
(a) Deleted rule.

(defrule Hirshmanniella

?fl <- (esophagus-glands-overlap-intestine ventrally)

;;; ?f2 <- (ovary 2)
=>

(retract ?fl)

;;; (retract ?f2)

(assert (nematode hirshmannlella))

(assert (id-criteria "1. esophagus glands overlap intestine ventrally."

"2. ovary 2."

"3. head-shape low and flat.")))

(b) Rule with deleted conditional element (ovary 2) and retract.

When provided with the set of 50 cases and the mutated rule-base, CLIPS-R extends

the rule-base to handle the new cases as follows. First, the two misclassified cases are

identified by CLIPS-R as the problem cases. Second a set of repairs are identified and

evaluated over all 50 cases. After completing the evaluations the repair that specialized

the rule Hirshmanniella to include (ovary $) as a conditional element is selected as

the best repair because it is the repair that most decreased the error rate over all 50

cases. Upon permanently adding (ovary 2) to the rule Hirshmanniella, the two cases,
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previously misclassified, are unclassified by the revised rule-base. After completion of

a second set of repair evaluations with no success at reducing error rate, rule induction

is successfully used to fix the unclassified cases, see Table II.

Table II: Revised Rules.

(defrule G 123091

(esophagus-glands-overlap-intestine ventrally)

(ovary 1)

=>

(assert (nema-id pratytenchus)))

(a) New rule.

(defrule Hirshmanniella

?ft <- (esophagus-glands-overlap-intestine ventrally)

(ovary 2)

=>

(retract ?fl)

(assert (nematode hirshmanniella))

(assert (id-criteria "1. esophagus glands overlap intestine ventrally."

"2. ovary 2."

"3. head-shape low and flat.")))

(b) Revised rule with conditional element (ovary 2} added.

Note the difference between the original rules shown in Table I and the revisions of

the mutated rules shown in Table II. The revised Hirshmanniella rule differs from the

original rule by the absence of a retract for the fact matching the (ovary _) conditional
element. The set of 50 test cases were insufficient to recognize that a retract was missing.

A similar problem is true for the induced rule G12309I. This rule was was added by

CLIPS-R to take the place of the the deleted rule Pratylenchus. While this rule asserts

a classification that is correct with respect to the test cases, (nema-id pratylenchus), it

is not quite the same assertion made by the deleted rule, (nematode pratylenchus) (if

(nematode pratylenchus) had been asserted by GI_3091, it would later be replaced by

the fact (nema-id pratylenchus)). In short, the results of this experiment highlight the

need for a comprehensive library of test cases.

Student Loan Rule-Base

In the original form, the student loan domain consists of a set of nine rules (represented

as Horn clauses) and a set of 1000 cases. The rule-base contains four errors (an extra
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literal, a missing literal, anextra clauseand a missingclause).The initial theory hasan
error of 21.6%. In order to usethis rule-basewith CLIPS-R, the nine Horn clauserules
were convertedinto nine production rules, eachwith a single assertaction. Multiple
clausesin the Horn clauserules were convertedto a disjunction of conjuncts within a
CLIPS production rule.

Execution of a casefor the student loan rule-baseconsistedof assertinginto an empty
fact-list a set of factsspecificto the caseand thenexecutingthe rule-baseto completion.
All results for the following experimentsareaveragesof 20 runs. All cases not used for

training are used for testing.

Table III: A Comparison of FOCL-FRONTIER and CLIPS-R.

Num. Cases FOCL % Error

25 11.8

50 5.8

75 2.8

CLIPS-R % Error

12.6

3.0

2.1

The experiment performed was to determine how well CLIPS-R performed at revising

the rule-base relative to FOCL-FRONTIER. Table III shows that the error rate is

competitive with that of FOCL-FRONTIER on this problem. Only with 50 training

examples is the difference in error significant (p < .05).

FUTURE WORK

CLIPS-R is still in its infancy and we expect many of the details of the individual

operators and heuristics to change as this work matures. Future directions include

solutions to the issues that arose when revising the nematode rule, e.g. a better language

for representing constraints on the correct execution of the rule-base, and the use of

rule clustering, rule-models and rule-groups to guide the revision and induction of rules.

Additional research could include a greater understanding of the distributions of rule-

base coding styles, automated rule-base understanding systems, and revision strategies

that simulate the methods by which humans manually revise rule-bases.

CONCLUSION

We have described CLIPS-R, a theory revision system for the revision of CLIPS rule-

bases. Novel aspects of CLIPS-R include the ability to handle forward chaining theories

with "nonlogical" operations such as rule saliences and the retraction of information

from working memory. The system is organized with an iterative refinement control

structure that identifies a set of similar problematic instances, identifies repairs that can

fix the errors associated with the instances, and than evaluates each repair to identify

341



the repair that best improvesthe rule-base.CLIPS-R can take advantageof a variety
of user specifiedconstraints on the correct processingof instancessuch as ordering
constraints on the displaying of information, and the contentsof the final fact-llst. In
addition, CLIPS-R canoperate aswell asexisting systemswhenthe only constraint on
processingan instanceis the correct classificationof the instance.
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Abstract

DAI-CLIPS is a distributed computational environment within which each CLIPS is

an active independent computational entity with the ability to communicate freely with

other CLIPS. Furthermore, new CLIPS can be created, others can be deleted or modify

their expertise, all dynamically in an asynchronous and independent fashion during

execution. The participating CLIPS are distributed over a network of heterogeneous

processors taking full advantage of the available processing power. We present the

general framework encompassing DAI-CLIPS and discuss some of its advantages and

potential applications.

1 Introduction

Scenarios to be solved by Artificial Intelligence (AI) applications rapidly increase in com-

plexity. If we are to even allude to the enormously difficult endeavor that represents Artificial

Intelligence, very flexible, robust and powerful computational systems are going to be needed.

These programs, and the processing architecture supporting them, will have to be able to

cope with a very wide range of dynamic external demands that are simply unpredictable.

Conditions vary greatly across tasks instances and constantly dictate different accom-

plishment strategies and usage of disparate sources of expertise. To be effective in such

situations, fusion must take place at many levels (information, expertise, processes,...).

Maximum degree of openness and flexibility is required of AI systems. Both hardware

architecture and software solutions must allow for scalable performance and scalable func-

tionalities. This, in return, will allow the matching of AI systems to the needs of the situation

as well as gaining access to the latest technological advances.

We believe that complex problems can best be solved via a pendemonium of smaller

agents. Each agent specializes in a different narrow aspect of cognition or field of knowledge

[Min85, Ten88]. Emphasis is thus placed on data and application parallelism.
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The computational environment presented herein integrates the simplicity, elegance and

expressiveness of the ACTOR computational model [Hew73, Agh86] with the exceptional pro-

cessing power of heterogeneous distributed and parallel architectures [Des93]. Expressiveness

is increased by providing for disjunct or even disparate sources of expertise to cohabitate

rather than trying to integrate them. The interfacing or fusion required is achieved via

message passing enabling asynchronous exchange of knowledge (facts, rules) among agents.

Agents in the present context are effectively extended CLIPS. CLIPS is an expert system

tool that was developed by NASA at the Software Technology Branch of the Johnson Space

Center [Gia94].
DAI-CLIPS is a distributed computational environment within which each extended

CLIPS is an active independent computational entity with the ability to communicate freely

with other CLIPS. Furthermore, new CLIPS can be created, others can be deleted or modify

their expertise, all dynamically in a totally asynchronous and independent fashion during

execution.

The remainder of this text is structured aS follows. Section 2 highlights the key charac-

teristic of the Actor computational model that influenced DAI-CLIPS and briefly describes

the system layer that constitutes the foundation of DAI-CLIPS. In section 3, we provide

a description of the conceptual framework offered by DAI-CLIPS by outlining its global

functionalities. In section 4, we provide some details about the architecture and available

functions. Section 5 brushes a quick picture of a few potential areas of research and devel-

opment that could benefit from such computational environment. Finally, sections 6 and 7

provides a discussion and our conclusions on the subject.

2 The Actor Model &: CLAP

In this section we highlight some of the main characteristics of the Actor model that

influenced and characterizes DAI-CLIPS. We then present a brief description of CLAP

[Des93, Gag93, Gag94], a system layer based on the Actor Model, that constitute the

foundation of DAI-CLIPS.

2.1 The Actor Model

A detailed description of the Actor Model can be found in [Agh86, Hew77]. We will only

discuss here a few of the more salient characteristics of the model:

Distributed. The Actor model consists of numerous independent computational entities

(actors). The actors process information concurrently, which permits the overall system

to handle the simultaneous arrival of information from different outside sources.

Asynchronous. New information may arrive at any time, requiring actors to operate

asynchronously. Also, actors can be physically separated where distance prohibits

them from acting synchronously. Each actor has a mailbox (buffer) where messages

can be stored while waiting to be processed.

Interactive. The Actor model is characterized by a continuous information exchange through

message passing, subject to unanticipated communication from the outside.
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Thus, an actor is basically an active independentcomputational entity communicating
freely with other actors.

There are at least two different waysto look at the Actor model. Viewedas a system, it
is comprised of two parts: the actors and a system layer (operating/management system).

From such a point of view the actors are the only available computational entities. The

system layer is responsible to manage, create and destroy actors as required or requested.

The system layer is also responsible for ensuring message passing among actors.

Viewed as a computational entity, an actor also comprises two parts: a script, that defines

the behaviors of the actor upon receipt of a message; and a finite set of acquaintances which
are the other actors known to the actor.

2.2 CLAP

The above viewpoint duality is preserved in CLAP:. CLAP is an implementation of an

extension of the actor model that can execute on a distributed heterogeneous network of

processors. The present version of CLAP can execute over a network of SUN SPARC worksta-

tions and Alex Informatique AVX parallel machines which are transputer based distributed

memory machines [Des93]. A port to HP and SGI workstations is in progress.

CLAP is an object-oriented programming environment that implements the following

concepts of the Actor model: the notion of actor, behaviors, mailbox, and parallelism at the

actor level. Further, CLAP offers the extension to the model of intra-actor parallelism.

Generally, CLAP applications will consist of many programs distributed over available

processors executing as a task under the control of the CLAP run time environment. In

CLAP, each actor is a member of a given task. It is up to the programmer to determine

how many actors there will be for any given task (although, a large number of actors in

a single task could mean the loss of potential parallelism in the application.) A scheduler

controls the execution of processes inside the tasks. Each task possesses a message server that

handles message reception for the actors in the task. Inter-processor message transmissions

are handled via RPC servers. XDR filters and type information are utilized for the encoding

and decoding of these messages. The CLAP environment is implemented in C++.

3 The Conceptual Framework

DAI-CLIPS is a distributed computational environment within which each CLIPS has been

extended to become an active independent computational entity with the ability to commu-

nicate freely with other extended CLIPS. Furthermore, new extended CLIPS can be created,

others can be deleted or modify their expertise, all dynamically in a totally asynchronous

and independent fashion during execution.

The desirata behind DAI-CLIPS is to produce a flexible development tool that captures

the essence of the "aggregate of micro agents" thesis supported by many in the study of

Computational Intelligence and Cybernetic [Hew73, Min85, Ten88]. The underlying thesis

being to have "micro agents", in our case complete CLIPS, specialized in different very

:C++ Library for Actor Programming.
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narrow aspectsof cognition or fields of knowledge2. As they go about their tasks, these
micro-agentsconferwith eachother and form coalitionsproducingcollated, revisedenhanced
viewsof the raw data they takein. Thesecoalitionsand their mechanismimplement various
cognitive processesleadingto the successfulresolution of the problem.

3.1 D.A.I.

The three highlighted characteristics of the Actor model in the previous section, namely

distributed, asynchronous and interactive, are at the basis of the conceptual framework

for DAI-CLIPS. The augmented CLIPS participating in the environment are completely

encapsulated and independent allowing their distribution at both the software and hardware

level. Meaning that not only can the CLIPS execute in parallel but they can also be physically

distributed over the network of available processors. Our present version of DAi-CLIPS can

have participating CLIPS distributed over a network of SPARC workstations and/or the

nodes of a transputer based distributed memory parallel machine. The interaction among

the CLIPS is asynchronous (synchronicity can be imposed when required). The interchange

of knowledge between these extended CLIPS can involve exchanging facts, rules, and any

other CLIPS data object or functionality.

3.2 Cooperation

The DAI-CLIPS environment is conducive of cooperation among a set of independent CLIPS.

We regard as cooperation any exchange of knowledge among CLIPS whether productive or

not.

There is a priori no pre-defined notion of an organizational structure among the CLIPS

in DAI-CLIPS. Any desired type of organization (e.g. hierarchy, free market, assembly line,

task force, etc.) can be achieved by providing each CLIPS the appropriate knowledge of the

structure and the mechanism or protocol to achieve it.

The broad definition of cooperation and the inexistence of pre-defined organizational

structures in DAI-CLIPS were conscious initial choices. We wanted to maintain the highest

flexibility possible for the environment in this first incarnation. We are contemplating the

introduction of mechanisms to DAI-CLIPS to ease the elaboration of specific types of orga-

nizations based on the premise of groups or aggregates. The aim of these efforts is to capture

the recursive notion of agency.

3.3 Dynamic Creation

A powerful capability of DAI-CLIPS is the possibility of dynamically generating or destroying

participatinglCLIPS at run time. The generation of new CLIPS can involve introducing a

new expertise or simply cloning an existing participant. When generating a new CLIPS, one

can specify which expertise the CLIPS is to possess by indicating the appropriate knowledge

base(s) to be loaded in the CLIPS at creation. This functionality has enormous potentials

that we have yet to completely explore.

2Expert Systems excel under these domain constraints.
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4 The Architecture

The general framework encompassing DAI-CLIPS can be viewed as four layers: the hardware

layer, the system layer, the agent layer, and the application layer (see fig1). The hardware

layer consists of a set of nodes (available processors) on the network (SPARCs and trans-

puters). The system layer (CLAP) is responsible to manage, create and destroy the processes

required or requested from the above agent layer as well as managing inter-agent communi-

cations. The agent layer provides a series of functionalities to implement various cognitive

processes via coalitions and organization mechanisms for a series of specialized micro-agents

(DAI-CLIPS). Finally, the application layer provides interfacing services and captures and

implements the user's conceptualization of the targeted domain. Such conceptualization

usually involves the universe of discourse or set of objects presumed in the domain, a set

of functions on the universe of discourse, and a set of relations on the universe of discourse

[Gen87].

Application Layer

Agent Layer

System Layer

Hardware Layer

Designer direct access I

Figure 1: The conceptual framework.

Within this general framework, an application designer can directly access and manipu-

late any of the four layers of the environment. This provides the designer with the flexibility

of manipulating objects at the level of abstraction he is more at ease with. For example,

a more advanced application designer could seek efficiency in his particular application by

manipulating objects all the way down to the system layer level, where someone else may be

quite content of the functionalities provided at the top layer.

4.1 Design

In the present version of the environment, each augmented CLIPS is associated with a CLAP

actor. These actors are loaded on different available processing nodes according to the load

of the nodes. To each augmented CLIPS is connected an interface which provides access to

the individual standard command loops of the CLIPS. An initial knowledge base is loaded

in each CLIPS (see fig2). Note that it is possible for two CLIPS to be uploaded with the
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same initial knowledge base or for a CLIPS to upload a supplementary knowledge base at

run time.

Application

DAI.CLIPS

CLAP

Processors

Designer direct access

An interface @ A CLIPS s processorA SPARC

(_ A Knowledge Base O A CLAP Actor T A Transputer

Figure 2: Surrounding environment of DAI-CLIPS.

4.2 Implementation

In this section we enumerate some of the functions specific to DAI-CLIPS and describe their

respective use and functionality. The list is not exhaustive S, rather the intent here is to

present some of the main functions which can be used directly by the user.

create-agent

Purpose: Creates a named agent without expertise.

Synopsis: (create-agent <string-or-symbol-agent-name>)

Behavior: The agent <string-or-symbol-agent-name> is created.

destroy-agent

Purpose: Destroys a named agent.

Synopsis: (destroy-agent <string-or-symbol-agent-name>)

Behavior: The agent <string-or-symbol-agent-name> is destroyed.

send-fact-agent

Purpose: Asserts a run-time fact in a named agent.

Synopsis: (send-fact-agent <string-or-symbol-agent-name> <string>)

Behavior: The fact<string> isassertedintheagent <string-or-symbol-agent-name>

who then executes.

3Due to restricted space in this article.
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send-deffact-agent

Purpose: Defines a persistent fact in a named agent.

Synopsis: (send-deffact-agent <string-or-symbol-agent-name>

< symbol-def fact -name> )

Behavior: The fact <symbol-deffact-name> is permanently asserted in the agent

<string-or-symbol-agent-name> who then executes.

send-defglobal-agent

Purpose: Defines a global variable in a named agent.

Synopsis: (send-defglobal-agent <string-or-symbol-agent-name>

< symbol-defglobal-name>)

Behavior: The global variable <symbol-defglobal-name> is defined in the agent

<string-or-symbol-agent-name> who then executes.

send-defrule-agent

Purpose: Defines a rule in a named agent.

Synopsis: (send-defrule-agent <string-or-symbol-agent-name>

< symbol-def rule-name> )

Behavior: The rule <symbol-defrule-name> is added in the expertise of agent

<string-or-symbol-agent-name> who then executes.

send-deftemplate-agent

Purpose: Defines a template in a named agent.

Synopsis: (send-deftemplate-agent <string-or-symbol-agent-name>

< symbol-deft emp Iat e-name > )

Behavior: The template <symbol-deftemplate-name> isadded in the expertiseof agent

<string-or-symbol-agent-name> who then executes.

load-for-agent

Purpose: Send a message to a named agent ordering him to load a specific expertise from a named

file.
Synopsis: (load-for-agent <string-or-symbol-agent-name> <file-name>)

Behavior: The agent <string-or-symbol-agent-name> possesses the expertise specified in

<file-name>.

5 Potential Areas of Applications

DAI-CLIPS provides an environment with a varying number of autonomous knowledge based

systems (expert-systems) that can exchange knowledge asynchronously. Such organiza-

tions of interconnected and independent computational systems are what Hewit calls Open

Systems 4 [Hew85]. We thus refer to DAI-CLIPS as an Open Knowledge Based Environment

or Open KBE for short. The potential areas of research and development that could benefit

from such a computational environment are considerable.

4The term "open system" being an overloaded term, we specifically refer to Hewit's definition of open

systems within the context of this article.
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5.1 Distributed Artificial Intelligence

The first such area that comes to mind is that of Distributed Artificial Intelligence (DAI)

[Bon88, Gas89, Huh87/. The facilities available in DAI-CLIPS to support interaction between

"intelligent" agents make it a flexible tool for DAI applications and research. In comparison

with some existing DAI test beds, DAI-CLIPS: does not impose a specific control architecture

such as the blackboard in GBB [Cor86]; does not restrict agents to a specific set of operators

as in TRUCKWORLD; and is not a domain specific simulator as in PHOENIX[Han93]. The

most closely related work is SOCIAL CLIPS [Adl91]. The major difference with SOCIAL

CLIPS is DAI-CLIPS' dynamic creation and destruction of participating CLIPS at run time.

There are a priori no predefined domain of application for DAI-CLIPS. A designer is

free to specialize his agents in the domain of his/her choice. Further, the agents can be

heterogeneous in their speciality (expertise) within a single application. The only imposed

commonality in DAI-CLIPS is the use of the extended CLIPS shell. The added power

provided by the dynamic creation/destruction of agents within DAI-CLIPS is the source of

the potential area of application proposed in the next section.

5.2 Evolutionary Computing

The principle behind evolutionary computing is that of population control [Koz93]. That is

ensuring that the population is not allowed to grow indefinitely by selectively curtailing it.

This population control is carried out by creative and destructive processes guided by natural

selection principles. The destructive process examines the current generation (population)

and curtails it by destroying its weakest members (usually those with the lowest values from

some predefined fitness measure). The creative process introduces a new generation created

from the survivors of the destructive process. The expected result is that of a better fit or

optimum population.
Given DAI-CLIPS capability of dynamically creating and destroying participating CLIPS

at run-time, one can begin to explore the potential of coarse grain evolutionary computing.

That is, applying evolutionary computing principles to a population of "agents" or expert

systems in order to optain a population of expert systems that selectively better perform on

a global task in accordance with some selected fitness measure. The creative and destructive

processes could be carried out by two independent agents. One agent evaluating the agents

of the population and destroying those that do not perform as expected (destructive pro-

cess), another, either bringing together the expertise of two fit agents into a newly created

expert or simply cloning a fit agent (creative process). We will refer to this approach as a

disembodied genetic mechanism. Alternatively, the agents of a population could themselves

possess "genetic knowledge" that would lead to self-evaluation. Based on the knowledge of

its own fitness, an agent could then decide to terminate operations or to seek an appropriate

agent for procreation (via mutation, crossover, etc.). This embodied genetic mechanism could

take place based on some pre-determined evolution cycle. Note that both the embodied and

disembodied genetic mechanisms can take place continuously and in totally asynchronous

fashion.
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6 Discussion

Open KBEs such as the one presented herein have considerable advantages:

• they allow independent systems to cooperate in solving problems;

• they allow disparate participant systems to share expertise;

• they allow for the presence of incoherent information among participant systems, no

need for global consistency;

• they provide for participant systems to work in parallel on common problems;

• participant systems can be distributed physically to make ultimate use of the available

processing power;

• asynchronous communication ensures very remote chances of deadlock;

• fault tolerance is easy to implement via system redundancy;

• participant systems can be developed and implemented independently and modularly;

• participant system are reusable in other applications;

and many others.

By choice, DAI-CLIPS has one limitation with respect to Open KBE: the participant

systems are limited to CLIPS based systems. In fact, the general framework encompassing

DAI-CLIPS can easily be extended to allow heterogeneous applications (e.g. other ES shells,

Data Bases, Procedural applications) to participate through the use of a common formal

language for the interchange of knowledge among disparate computer programs such as

Knowledge Interface Format (KIF) and the use of a common message format and message-

handling protocol such as the Knowledge Query and Manipulation Language (KQML). The

use and adherance to these two upcoming standards from the DARPA Knowledge Sharing

Initiative can assure that any incompatibility in the paticipant systems' underlying models

for representing data, knowledge and commands can be ironed out to attain the desired

higher level of openness.

DAI-CLIPS and its encompassing environment will be the source of more research and

enhancements. We are presently putting the final touch to a second version of DAI-CLIPS

that implements the notion of multiple behaviors from the Actor model. That is, the capa-

bility of an agent to change its behavior in order to process the next message. Effectively,

a CLIPS shell will possess different expertise and will "context switch" to make use of the

appropriate knowledge to process the received message.

7 Conclusion

We introduced DAI-CLIPS, a distributed computational environment within which each

CLIPS is an active independent computational entity communicating freely with other

CLIPS. Open KBEs such as this one have many advantages, in particular, they allow for
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scalable performanceand scalablefunctionalities at both the hardware and the software
level. The potential applicationsof suchenvironmentsare considerable.The unique power
of dynamic creationand destruction of DAI-CLIPS could lead to new forms of "intelligent"
evolutionary systems.
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ABSTRACT

A parallel version of CLIPS 5.1 has been developed to run on Intel Hypercubcs. The user interface
isthe same as thatforCLIPS with some added commands toallow forparallelcalls.A complete

versionof CLIPS runs on each node of the hypercub¢. The system has been instrumentedto

displaythetime spentinthe match,recognize,and actcycleson each node. Only rule-level

parallelismissupported.Parallelcommands enabletheassertionand retractionof factsto/from

remote nodes working memory.

ParallelCLIPS was used toimplement a knowledge-based command, control,communications,

and intelligence(C31)system todemonstratethefusionofhigh-level,disparatesources.We
discussthenatureof the informationfusionproblem, our approach,and implementation.Parallel

CLIPS has alsobccn used torun severalbenchmark parallelknowledge bases such as one to setup

a cafctcria.Resultsshown from running ParallelCLIPS withparallelknowledge basepartitions

indicatethatsignificantspeed increases,includingsuperlinearinsome cases,arcpossible.

INTRODUCTION

ParaUclCLIPS (PCLIPS) isa rule-levelparallclizationof theCLIPS 5.1 expertsystem tool.The

concentrationon rule-levelparallelismallowsthe developed system torun effectivelyon current

multipleinstructionmultipledata(MIMD) machines.PCLIPS has bccn testedon an Intcl

Hypcrcubc iPSC-2/386 and 1860.Our approach bearssimilaritiesinfocus toresearchdiscussedin

[12, 6, 7].

In this paper, we will show an example where the match bottleneck for production systems [1, 3]
is eased by utilizing rule-level parallelism. The example involves setting up a cafeteria for different
functions and is indicative of the possibilities of performance improvement with PCLIPS [ 13]. A

second example of a battle management expert system provides a perspective to real world

applications in PCLIPS.

Z
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The rest of the paper consists of a description of PCLIPS, a section describing the knowledge
bases (and parallelization approaches) of the examples and speed-up results from running them
using PCLIPS, and a summary of experiences with parallel CLIPS.

THE PCLIPS SYSTEM

Based on experience with an early prototype, the design of the PCLIPS user interface models that
of CLIPS as much as possible. A small extension to the syntax is used to allow the user to access

working memory on each node, add/retract facts or rules to specific nodes, etc. For example, a
load command with four processors allocated now takes the form: (0 1, load "cafe") and (, load
"cafe"). The fast command will load files cafe0 to node 0 and cafe 1 to node 1, and the second
command loads files care0, care 1, cafe2, and care3 onto nodes 0, 1, 2 and 3. Other commands

operate in the same way with (2, facts) bringing in the facts from node 2 and (3 7, rules) causing
the rules from processors 3 and 7 to be displayed.

After rule f_.ng is complete in PCLIPS, the amount of time spent by each node in the match,
recognize, and act cycles is displayed. The amounts of time are given as percentages of the overall
time, which is also displayed. Sequential timings are obtained from running PCLIPS on one node.

A complete version of CLIPS 5.1 enhanced with three parallel operations, xassert, xretract and

mxsend, runs on each of the nodes and the host of an iPSC2 hypercube. The host node
automatically configures each of the allocated nodes without user intervention when PCLIPS is

invoked. The xassert command simply asserts a fact from one node to a remote node's working
memory. For example, (xassert 3 (example fac0) makes its assertion into the working memory of
node 3. The general form is (xassert node_number fact_to_assert). To retract a fact from a remote

working memory use (xretract node_number fact_to_retract). Both operations build a message and
cause it to be sent by the hypercube operating s_,stem. Neither command depends upon a specific
message passing hardware or software mechamsm.

Long messages can take less time to send than many short messages on Intel Hypercubes [2, 8] so
mxsend0 provides the user with the capability of asserting and/or retracting multiple facts
into/from one processor to another processor. The syntax of the function is as follows: (mxsend
node_numbers). Mxsend0 needs a sequence of calls in order for it to work as desired. The In'st

step in correctly building a message to be used by mxsend0 is to call the function clear_fact0. The
syntax for this function is as follows: (clear_fact). This function simply resets the buffer used by
mxsend0 to the '~' character. This character is n_¢ssary for a receiving processor to recognize the
received message was sent by using mxsend0. The second step is to actually build the message to
be sent. In order to do this, a sequence of calls to the function buildfact0 should be performed.
The syntax of buildfact0 is as follows: (buildfact action fact). There are four possible values for
the action variable. They are '0', '1 ', 'retract', and 'assert'. The '0' flag and 'retract' will both

cause the building of a message to retract a fact (this is done by inserting a '$' character in the
message buffer followed by fact), and' 1' and 'assert' will both cause the building of a message to
assert fact (this is done by inserting a '#' character in the message buffer followed by fact). If the
following sequence of calls is performed, (buildfact assert Hello World) (buildfact retract

PARCLIPS is fun) (buildfact assert Go Bulls!!!) (buildfact assert Save the Earth) the following

string will be created: ".--#Hello World$PARCLIPS is fun#Go Bulls!!!#Save the Earth" Finally,
the function mxsend0 can be called. Mxsend0 will send the message built to the specified
processors so that the message will be processed by the receiving processors. The call (mxsend 10
11 12), will cause the previously built message to be sent to processors 10, 11, and 12. The proper
action is taken by the receiving processors who either assert or retract facts into/from their working
memory.
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SincePCLIPSis a research prototype, the user is _ee to u_ or misuse _e paral. !el calls.in _nmYl_aY
he/she chooses. No safeguards are currently provided. On me omer nana, me mtertace _s sl p
and the calls straightforward. The question that comes to mind is whether they provide enough

power to enable useful speed-ups on MIMD architectures. Our current work shows that they are
suitable for obtaining useful speedups [ 13], if the knowledge base is parallelized in a careful and

appropriate way.

Examples

In thissectionwe show resultsfrom parallelizinga knowledge base and discussa realapplication

forparallelexpertsystems.All spccdups arcreportedas thesexlucntialtime ortime on one node
dividedby the time toprocessthesame setof initialfactsand obtainthesame setof finalfactsin

parallel(SequentialTime_arallclTime).

Before discussingexamples, we discussa few guidelin_ f_parallelizingrulebases thathave

become clearin thecourseof developing and testingi-_Lir_.

Parellelizing Knowledge Bases

There are severalapproaches thathave be.cntaken toparallelizingknowledge bases [5,7,9, II].

An importantaspectisthattheparallelresultsbc equivalenttothe serialresults.Methods ofexplicit

synchronization[II]do notseem feasibleuntilcommunication timesarc significantlyreduced on

parallelmachines. Hence, we have pursued serializationthrough rulebase..modification.This .,
means thatthe rulesina parallelknow!edge base generatedunder our paradigm arenot nccessamy

syntacticallythe same as a setof sequentialrules.

There aretwo approaches toparallelizingtherulesofa specificsequentialknowledge base.The

fast,and most usualone, istopartitiontherulesindependentof thetypesoffactsthey willmost

likelybe used with.In thisapproach,bottleneckrulesthatmay need tobe distributedtomultiple

processorsmust bc searchedforduringa sequentialtraceof theknowledge based system's

operation.Processorsmust be loadbalanced with an appropriatenumber of rules.All parallel
actionsmust bc insertedintotherighthand sideoftherules.All factswillbe distributedtoall

nodes under thisparadigm.

The second approach toparallclizingtheknowledge base istoparaUclizcitbased upon therules

and theexpected typeof facts.This approach isonly feasibleifa rulebase may bc expected to

work with one typeor setof facts(withthefactsthemselveschanging) inmost cases.This

approach involvesan analysisof the sequentialperformance of theknowledge based system with a

specificsetof factsand thena parallclizationof theknowlcdgc base fora setofprocessors.In the
limitedtestingdone inour work, thisapproach toparallelizingrulesprovidcsa greaterspeed-up.

Cafeteria

There are 93 rules in our version of the cafeteria .knowledge_: The,_e s are.gc..ou.ped irate_
contexts, where an example context involves setung a taote. A ru_e ana tact partmonmg o e
cafeteria knowledge base was done with the use of xassert and xretract and a speedup.of 5.5 times
was obtained using eight processors. The speedup obtained without using these funcuons was
6.47 times also using eight processors. Both speedups are less than linear but notice the decrease

in speedup when using xassert and xretract. The decrease in speedup is here attributed to inter-

processor communication. The time required to decode a message and assert it into working
memory is between 1-2 msec [10]. The time used to obtain the above results includes the time

required to transmit facts across to other nodes, retract/assert them into working memory, and do
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thecompleteinferencing.A singlemessageof 1K takes 1.1 msec to process [2]. Larger messages,
however, take considerably more time to process, as shown by Boman and Roose [2]. Since, for
these partitions, the messages sent across the nodes are larger than 1Kbyte (every node
concatenates approximately 50 35-byte messages, making messages of 1.7 Kbytes that are sent
using mxsend0), and all nodes transmit their messages to the same node (messages might have to
wait on intermediate nodes and hence are blocked until memory on the destination node is available
to receive the complete message [10, 2]). It is clear from the above that communication is the
reason for the decrease in speedup.

The cafeteria knowledge base was also partitioned using 11 and 13 processors. A speedup of 11.5
was obtained using 11 processors, whereas the 13-processor partition produced a speedup of
22.85 times. A fact-based partitioning method was used to obtain both of these partitions. These
speed-ups are clearly super-linear and occur because the match percentage of time is reduced in a
non-linear fashion by this partitioning approach [13]. Due to space limitations, we will not explore
this phenomenon further but refer the reader to our technical report [4].

Finally, several two-processor partitions of cafeteria were performed partitioning the rules only. A
speedup of 2.035 times (65.99% matching, 21.11% acting) with two processors was obtained. In
this case, rules were copied to each partition unmodified, causing the assertion of facts that are
never used by the partition (since the asserted facts enable the f'u'ing of a context present in another
partition). Partitioning the facts also, the speedup obtained was 2.06 (67.41% matching, 20.26%
acting), which is only slightly higher than the speedup obtained when the facts were left intact.
Notice that this result suggests that the number of extra unnecessary facts does not significantly
affect the overall parallel execution time. A final two-processor partition was performed by
modifying the rules left in each partition so that they assert only the context facts needed in the
partition. A speedup of 2.13 times was obtained in this case.

Battle Management Expert System

The information fusion problem for battle management occurs when multiple, disparate sensor
sources are feeding an intelligence center. This intelligence center is trying to produce timely,
accurate and detailed information about both enemy and friendly forces in order for commanders to

make effective battle management decisions. The challenge to the (23I operation is to integrate
information from multiple sources in order to produce a unified, coherent account of the tactical,
operational or strategic situation.

There has recently been a vast proliferation of fixed and mobile, land- and air-based sensors using
acoustic, infrared, radar and other sensor technologies. The result of this proliferation has made

more work for the C3I operation.

Sensors can vary in a variety of dimensions including:
• Coverage Area
• Temporal Characteristics of Coverage
• Field of View

• Angle of View
• Range
• Resolution

• Update Rate
• Detection Probability
• Modality of Imagery
• Degree of Complexity/Realism of Imagery
• Type of Target Information

• Temporal Characteristics of Reports
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Each collection system, then, gives a specialized sampling of conditions to a particular level of
detail, in specific locations, at a specific point in time, and with a particular level of accuracy. As a
result, the analyst receives information that may be incompatible, fragmentary, time-disordered,
and with gaps, inconsistencies and contradictions.

Honeywell's Combat Information Fusion Testbed (CIFF) has been developed to provide the
hardware and software environment that can support development of tools powerful enough to

assist intelligence analysts in correlating information from widely disparate sources. The current
testbed capabilities were chosen for the context of handling three sensors: an airborne moving

target indication (MTI) radar, a standoff signal intelligence (SIGINT) system, and an unmanned
aerial vehicle (UAV) with a televis!on camera payload. Tl_.is correlation _pab!lity is fu_ntal

forinformationfusion..Byinte.gr.anngHoneywell s .propne.tar_real-..m'nc.t)tacg_ arcratectu_,n

(RTBA) with the propnetary spataal-temporal reasoning .te,cn.mque call_poioglcm re_e_jSea_UO
fiR), the testbed has been able to perform the data assocmuon tasK. t:tr i was aevetopea
tested against a four-hour European scenario involving troop movement in a 40X60 km area that
was observed by an MTI radar, a SIGINT system, and a UAV. We determined the target
detections and circular error probabilities and time delay that these three systems would be expected
to make. CIFI" was found to operate effectively on this data, associating reports from the different
sensors that had emanated from the same target.

CIFT was then implemented on the lntel iPSC-860 parallel processor [14] producing Parallel-CIFT
(or Parallel-CIb"r). This processor has eight parallel nodes. There are three major components of
the CIFr system: Geographic/Scenario data, Blackboard Control Structures, Spatial/Temporal
Reasoners.

Geographic/Scenario Data: These contain the bit maps of the map overlays and the scenario-
specific operational and doctrinal data. The current scenario illustrates a Motorized Rifle Regiment
in the Fulda area of eastern Germany mobilizing for a road march. This activity includes SIGINT,
AUV (airborne unmanned vehicles with video camera payloads), and MTI (moving target indicator
radar) sensor reports to a G2 intelligence workstation. The geographic data includes overlays for

cities, primary and secondary roads, dense vegetation, and railroads.

Blackboard Control Structures: CLIPS provides the control and representation structures for the
blackboard control architecture. Honeywell wrote data structures and fusion rules in the CLIPS
format on a Sun workstation. These components were then parallelized and ported to the iPSC-
860. Three demonstrations are available: one uses only one of the nodes on the parallel processor

(this simulates a traditional serial computer for bench marking purposes), one uses two parallel
nodes, and one uses four parallel nodes.

Spatial�Temporal Reasoning: The spatial/temporal reasoner for this system is built on a four-
dimensional reasoner developed from Allen's temporal interval reasoning system. It defines the
relations that can exist between time and space events and reasons from these primary relations.

This system represents a demonstration of concept of the,Par,al., le! C.II_I" s_..yste_ a challenging
problem in a challenging domain which effectivety uses me varaael CLIF:_ too.

On'rent research efforts include:

* Auto allocation of parallel components---This work requires some basic and
applied research. We propose using a nearest neighbor shear sort algorithm to
dynamically allocate processing tasks across multiple processors. This will balance the
load among the processors and ensure optimal performance.
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Demonstrate P-CIFT and extensions on Paragon--This requires three
preliminarysteps:I)Port CLIPS (theforward-chaininginferenceengine,on which P-

CIFT isbuilt)to theParagon, 2) PortP-CIFF to theParagon, 3)Extensions
developed toP-CIFF. See followingpoints.

• Addition of object-orlented data base (OODB) capabilities--This should be
easilycompleted with use of theCLIPS 6.0.

Development of a domain specific information fusion shellDCommon
elements from a variety of information fusion applications (Honeywell currently has

.Army. and Navy scenarios, with plans to extend into commercial domains, medical
nnagmg, robotics, and electroniclibrariesspecifically,inthe nextyear)willbe

formalizedand generalizedforfutureuse on othersystems.This organicgrowth of

genericcomponents willassurethe applicability,generalityand usefulness.

Multi-hypothesis reasoningnThis will require integration of techniques for
multiple hypothesis generation, maintenance, and testing. Previous related work [15]
has demonstrated successful approaches in tasks with s_ar multiple assignment
requirements. New research would be required to examine parallel implementation of
these approaches. It is likely that a parallel approach could be much more efficient.

• Quantification of performance resultsDPast work has provided demonstrations
of concept, but has provided no performance results.

SUMMARY

In this paper, we have discussed a parallel version of the CLIPS 5.1 expert system tool. The
parallel tool has a simple interface that is a direct extension of the usual CLIPS interface for parallel
use. The tool makes use of rule-level parallelism and has been tested on Intel Hypercubes.
Examples of expert systems that may be parallelized have been shown. The major bottleneck
involves developing effective and automated methods of parallelizing knowledge bases.

The cafeteria knowledge base example shows that good speed-up is possible from just rule-level
parallelism. In fact, in the cases where both rule and fact partitioning can be done the speed-up is
super-linear in this example. It appears the approach of rule-level parallelism holds significant
promise for parallel expert system implementation on MIMD distributed memory computers.

The Parallel Combat Information Fusion Testbed represents a challenging real-world application of
Parallel CLIPS technologies.
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Abstract

Virtual reality (VR) is an exciting use of advanced hardware and

software techonologies to achieve an immersive simulation. Until re-

cently, the majority of virtual environments were merely "fly-throughs"
in which a user could freely explore a 3-dimensional world or a visual-

ized dataset. Now that the underlying technologies are reaching a level

of maturity, programmers are seeking ways to increase the complexity

and interactivity of immersive simulations. In most cases, interactiv-

ity in a virtual environment can be specified in the form =whenever

such-and-such happens to object X, it reacts in the following man-

ner." CLIPS and COOL provide a simple and elegant framework for

representing this knowledge-base in an efficient manner that ca_a be

extended incrementally. The complexity of a detailed simulation be-

comes more manageable when the control flow is governed by CLIPS'

rule-based inference engine as opposed to by traditional procedural

mechanisms. Examples in this paper will illustrate an effective way to

represent VR information in CLIPS, and to tie this knowledge base

to the input and output C routines of a typical virtual environment.
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1 Background Information

1.1 Virtual Reality

A virtual experience, or more precisely, a sense of immersion in a computer

simulation, can be achieved with the use of specialized input/output devices.

The head-mounted display (HMD) is perhaps the interface that most char-

acterizes virtual reality. Two small screens, mounted close to the user's eyes,

block out the real world, and provide the user with a three-dimensional view

of the computer model. Many HMDs are mounted in helmets which also

contain stereo headphones, so as to create the illusion of aural, as well as vi-

sual immersion in the virtual environment. Tracking technologies permit the

computer to read the position and angle of the user's head, and the scene is

recalculated accordingly (ideally at a rate of thirty times a second or faster).

[1]
There are many types of hardware devices which allow a user to interact

with a virtual environment. At a minimum, the user must be able to navigate

through the envrionment. The ability to perform actions or select objects

in the environment is also critical to making a virtual environment truly

interactive. One popular input device is the DataGlove which enables the

user to specify actions and objects through gestures. Joysticks and several

variants axe also popular navigational devices.

1.1.1 Training

Virtual reality promises to have a tremendous impact on the way that train-

ing is done, particularly in areas where hands-on training is costly or dan-

gerous. Training for surgery, space missions, and combat all fall into this

category; these fields have already benefitted from existing simulation tech-

nologies [2]. As Joseph Psotka explains, "Virtual reality offers training as

experience" [3, p. 96].

1.1.2 Current Obstacles

VR hardware is progressing at an astonishing rate. The price of HMDs and

graphics workstations continues to fall as the capabilities of the equipment

increase. Recent surveys of the literature have concluded that the biggest
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obstacleright now in creating complex virtual environments is the software

tools. One study said that creating virtual environments was "much too

hard, and it took too much handcrafting and special-casing clue to low-level

tools" [5, p. 6].

VR developers have suffered from a lark of focus on providing interactiv-

ity and intelligence in virtual environments. Researchers have been "most

concerned with hardware, device drivers and low-level support libraries, and

human factors and perception" [5, p. 6]. As a result,

Additional research is needed to blend multimod_ display, mul-

tisensory output, multimodal data input, the ability to abstract

and expound (intelligent agent), and the ability to incorporate hu-

man intelligence to improve simulations of artifical environments.

Also larking are the theoretical and engineering methodologies

generally related to software engineering and software engineer-

ing environments for computer-aided virtual world design. [4,

p. 10]

1.2 CLIPS

VR programmers need a high-level interaction language that is object-oriented

because "virtual environments have potentially many independent but inter-

acting objects with complex behavior that must be simulated" [5, p. 6]. But

unlike typical object-oriented systems, there must be "objects that have time-

varying behavior, such as being able to execute Newtonian physics or sIIsteras

of, les" [5, p. 7].
CLIPS 6.0 can fill this need for a high-level tool to program the interac-

tions of a virtual environment. COOL provides the object-oriented approach

to managing the large number of independent objects in complex virtual en-

vironments, and CLIPS 6.0 provides the ability to construct rules which rely

on pattern-matching on these objects.

CLIPS is a particularly attractive option for VR training applications

because many knowledge-bases for training are already implemented using

CLIPS. If the knowledge-base about how different objects act and interact in

a virtual environment is implemented in the same language as the knowledge-

base containing expert knowledge about how to solve tasks within the envi-

ronment, then needless programming effort can be saved.
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2 Linking CLIPS with a Low-level VR Library

2.1 Data Structures

Every VR library must use some sort of data structure in order to store all

relevant positional and rotational information of each object in a virtual envi-

ronment. These structures are often called nodes and nodes are often linked

hierarchically in a tree structure known as a scene. In order to write CLIPS

rules about virtual objects, it is necessary to loa_l all the scene information

into COOL.

The following NODE class has slots for a parent node, children nodes, z-,

y-, and z-coordinates, and rotational angles about the z-, y-, and z-axis.

(defclass NODE

(is-a USER)

(role concrete)

(slot node-index (visibility public)

(create-accessor read-write) (type INTEGER))

(slot parent (visibility public)

(create-accessor read-write) (type INSTANCE-NAME))

(multislot children (visibility public)

(create-accessor read-.rite) (type INSTANCE-NAME))

(slot • (visibility public) (create-accessor read) (type FLOAT))

(slot y (visibility public) (create-accessor read) (type FLOAT))

(slot z (visibility public) (create-accessor read) (type FLOAT))

(slot xrot (visibility public) (create-accessor read) (type FLOAT))

(slot yrot (visibility public) (create-accessor read) (type FLOAT))

(slot zrot (visibility public) (create-accessor read) (type FLOAT)))

It is a trivial matter to write a converter which generates NODE instances

from a scene file. For example, a typical scene might convert to:

(definstances tree

(BODY of NODE)

(HEAD of NODE)
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; and so on

)

(modify-instance [BODY]

(z 800.000000)

(y -5o.oooooo)
(z 280.000000)

(zrot 180.000000)

(yrot O. 000000)

(zrot 180.000000)

(parent [REF] )

(children [HEAD]

; and so on
[Rpalm] [Chair]))

2.2 Linking the Databases

Note that the NODE class has no default write accessors associated with slots

z, y, z, zrot, yrot, or ::rot. Throughout the VR simulation, the NODE

instances must always reflect the values of the node structures stored in

the VR library, and vice versa. To do this, the default write accessors are

replaced by accessors which call a user-defined function to write the value to

the corresponding VR data structure immediately after writing the value to

the slot. Similarly, all of the VR functions must be slightly modified so that

any change to a scene node is automatically transmitted to the slots in its

corresponding NODE instance.

The node-indez slot of the NODE class is used to give each instance a

unique identifying integer which serves as an index into the C array of VR

node structures. This helps establish the one-to-one correspondence between
the two databases.

2.3 Motion Interaction

A one-to-one correspondence between the database used internally by the VR

library and COOL objects permits many types of interactions to be easily

programmed from within CLIPS, particularly those dealing with motion.

The following example illustrates how CLIPS can pattern-match and change
slots, thus affecting the VR simulation.
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(defrule raSbit-scared- of-blue-carrot

(objec% (name [RABBIT]) (x ?r))

(object (name [CARROT]) (x ?c&:(< ?c (+ ?r 5))&:(> ?c (- ?r 5))))

l>

(send [RABBIT] put-x (-?r 30)))

Assuming the rabbit and blue carrot can only move along the z-axis, this

rule can be paraphrased as "whenever the blue carrot gets within 5 inches of

the rabbit, the rabbit runs 30 inches away."

2.4 The Simulation Loop

Most interactivity in virtual environments can be almost entirely specified

by rules analogous the above example. A simulation then consists of the

following cycle repeated over and over:

1. The low-level VR function which reads the input devices is invoked.

2. The new data is automatically passed to the corresponding nodes in

COOL, as described in Section 2.1.

3. CLIPS is run, and any rules which were activated by the new data are

executed.

4. The execution of these rules in turn triggers other rules in a domino-like

effect until all relevant rules for this cycle have been fired.

5. The VR library renders the new scene from its internal database (which

reflects all the new changes caused by CLIPS rules), and outputs this

image to the user's HMD.

While the low-level routines still provide the means for reading the input

and generating the output of VR, the heart of the simulation loop is the

execution of the CLIPS rule-base. This provides an elegant means for in-

crementally increasing the complexity of the simulation; best of all, CLIPS'

use of the Rete algorithm means that only relevant rules will be considered

on each cycle of execution. This can be a tremendous advantage in complex

simulations.
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2.5 More VR functions

There are some VR interactions that cannot be accomplished solely through

motion. Fortunately, CLIPS provides the ability to create user-defined func-

tions. This allows the programmer to invoke external functions from within

CLIPS. User-defined CLIPS functions can be provided for most of the useful

functions in a VR function library so that the programmer can use these func-

tions on the right-hand side of interaction rules. Some useful VR functions
include:

make-invisible Takes the node-index of an instance as an argument.

change-color Requires the node-index of an instance and three floats spec-
ifying the red, green, and blue characteristics of the desired color.

test-collision Takes two node-index integers and determines whether

their corresponding objects are in contact in the simulation.

play-sound Takes an integer which corresponds to a soundfile (this corre-

spondence is established in another index file of sound files).

The play-sound function takes an integer as an argument, instead of

a string or symbol, because there is slightly more overhead in processing

and looking up the structures associated with strings, and speed is crucial

in a virtual reality application. Similarly, all user-defined functions should

receive the integer value stored in an instance's node-index slot, instead of

the instance-name, for speed purposes.

It is also possible to create a library of useful deffunctions which do many

common calculations completely within CLIPS. For example, a distance func-

tion, which takes two instance-names and returns the distance between their

corresponding objects, can be written as follows:

(deffunction distance (?nl ?n2)

(sqrt (+ (** (- (send ?n2 get-x)

(** (- (send ?n2 get-y)

(** (- (send ?n2 get-z)

(send ?nl get-x)) 2)

(send ?nl get-y)) 2)

(send ?nl get-z)) 2))))
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3 Layers upon Layers

Once basic VR functionalityis added to CLIPS, virtualenvironments can

be organized in CLIPS according to familiarobject-orientedand rule-based

design principles. For example, a RABBIT class could be defined, and the

example rulescould be modified to pattern match on the is-afieldinstead of

the name field.Ifthiswere done, any RABBIT instance would automatically

derive the appropriate behavior. Once a libraryof classesisdeveloped and

an appropriate knowledge-base to go with it,creating a sophisticated virtual

environment ismerely a matter of instantiatingthese classesaccordingly.

Consider thisfinalexample, illustratingpoints from Sections 2.5 and 3.

(defrt_e shy-rabbit-behavior

"?.rabbit<- (object (is-a RABBIT) (personality shy)

(x ?) (y?) (z?))
.'?hand<- (object (is-a HAND) (x ?) (y ?) (z ?))

m>

(if (< (distance ?rabbit ?hand) I00) then

(bind ?rabbit-index (send ?rabbit get-node-index))

(if (evenp (random)) then

(change-color ?rabbit-index I 0 O) ; rabbit blushes

else

(make-invisible ?rabbit-index))))

This rule becomes relevant only ifthere isa shy rabbit and a hand in the

simulation. Ifso, shy-rabbit-behavior isactivated whenever the hand or

the rabbit moves. Ifthe hand gets close to the rabbit,there isa 50% chance

that the rabbit willblush,and a 50% chance that the rabbit willcompletely

vanish.

4 Conclusion

CLIPS has been successfullyenabled with virtualrealityprogramming capa-

bilities,using the methodologies described in thispaper. The two test users

of thisapproach have found CLIPS to be a simpler, more natural paradigm

for programming virtualrealityinteractionsthan the standard approach of

managing and invoking VR functionsdirectlyin the C language. Hopefully,
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by using high-level languages like CLIPS in the future, more VR program-

mers will be freed from their current constraints of worrying about low-level

details, and get on with what really matters -- creating complex, intelligent,
interactive environments.
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Abstract

This paper discusses the implementadon and use of reflexive reasoning in real-dine, distributed
knowledge-based applications. Recently there has been a great deal of interest in agent-oriented systems.
Implementing such systems implies a mechanism for sharing knowledge, goals and oth_ state information
among the agents. Our techniques facilitate an agent examining both state information about other agents
and the parameters of the knowledge-based system shell implementing its reasoning algorithms. The shell
implementing the reasoning is the Distributed Artificial Intelligence Toolkit, which is a derivative of
CLIPS.

Introduction

There has been a great deal of recent interest in multi-agent systems largely due to the increasing cost-
effectiveness of utilizing distributed systems; in just the national CLIPS conference six papers appear
which seem to discuss developing multi-agent systems. Further, although we strenuously.try to avoid
incorporating domain-specif'tc knowledge in systems, real-time applications have an obwous ne..e_, to
understand the relationships between their processing requirements, available system resources, deadlines
which must be met, and their environment. Hence, our progranumng methodology has been mat

individual agents need not necessarily be cognizant of any system information, but rather can communicate
their own informational requirements, can sense their state in the system, and modify the internal

processing parameters of the system (e.G., for load balancing) as the application demands. We allow the
agents to sense and affect their processing environment so that they can inteliigently reason about and
affect the execution of applications.

Implementation of Reflexive Reasoning

We have previously documented the characteristics of our tool, the Distributed Artificial Intelligence
Toolkit [I][2]. The tool provides extensions to CLIPS for fault-tolerant, distributed, real-time reasoning.

Many of these characteristics are controllable by individual reasoning agents so that when insufficient

processing time. is. available, for example, proce.ssor fault-tolerance.may need to sacrificed. The.control of
such characteristics is provided numerous predicates. Correspondingly, the agents can sense me curr¢ t
settings of the environment through a state description of the inference engine contained in the fact base

(and which can be pattern-matched).

Calls to such predicates,as well as numerous 'C' functions implemented to provide additional

functionality,were used toimplement theAgent ManipulationLanguage (AML). AML (Table I)provides

thefunctionalityto manipulate,assigntasksto,and teach agents.The functionsused to implement AML

includethoseprovidingfault-tolerance,fortransmittingfacts,template and objects,and thosemimicking
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user-interface functionality; the data assistants of our architecture(Figure 1) actually interface to the user,
evoking functionality from the reasoning agents [1].

Language

The last big issue is how the environment is sensed and affected at a low level. These processes are
accomplished by intercepting and interpreting the individual elements of facts and templates before they are
actuallyasserted.This kind of functionalityallowsagentsto be minimally requiredtoaffectotheragents;
agentscan Know and affecteach other(on thesame or othermachines) as much or as littleas theydesire.

Formally proprietaryinformation,thisis now being divulged because implementing the code for the

parsing of such information has been deemed too difficultfor students,even graduate students,to
maintain.

Reflexive Reasoning in Distributed Real-time Systems

Consider a real-time robotics application. The application consists of path planners, task planners, sensor
and effector managers, motion control modules, etc. For the planning modules we typically would want to
employ fault-tolerance, but for many of the other modules we would want very fast ulxtate rates. Hence,
we might initially turn off fault-tolerance for, turn on interruptable reasoning for, and reduce the
granularity of reasoning for the machines controllers, sensor managers, motion control modules, etc.

Certain planners and motion control modules would probably would probably require more resources than
others. Modules noting short times between actual completion of tasks and the tasks' actual deadlines can
evoke operating system functionality, via the data assistants, to determine processors with "excess"
computing power. The over burdened agents could then create new agents, advise them to learn a set of
rules, and off-load some of their work to newly instantiated agents. Hence, as the system executes,
overworked agents could instigate load balancing.

Agents can also use reflexive reasoning in less subtle manners; any agent can request to see the fact and
object base of any other agent. Agents can also request to know the goals of interest of other agents (or
rather, which agents are interested in what goals). Hence, agents can also reason about the reason about
the reasoning being performed by other agents.
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Conclusion

We have briefly discussed implementing and using reflexive reasoning in distributed, real-time
applications. Reflexive reasoning provides reasoning agents in distributed systems to analyze and modify
the reasoning processes of other agents. We have found reflexive reasoning an effective tool for facifimfing
control of real-time, multi-agent systems. Our implementation of reflexive reasoning has been hierarchical,
building up an agent manipulauon language from predicates describing and affecting the reasoning
process. These predicates have been, in turn, implemented from low-level functions written in 'C'.
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Abstract

This paper describes PalymSys TM -- an extended version of the CLIPS language that is designed to facilitate the
implementation of blackboard systems. The paper first describes the general characteristics of blackboards and shows

how a control blackboard architecture can be used by AI systems to examine their own behavior and adapt to real-time
problem-solving situations by striking a balance between domain and control reasoning. The paper then describes the
use of PalymSys TM in the development of a situation assessment subsystem for use aboard Army helicopters. This
system performs real-time inferencing about the current battlefield situation using multiple domain blackboards as well
as a control blackboard. A description of the control and domain blackboards and their implementation is presented.
The paper also describes modifications made to the standard CLIPS 6.02 language in PalymSys TM 2.0. These include:

l) A dynamic Dempster-Shafer belief network whose structure is completely specifiable at run-time in the consequent
of a PalymSys TM rule, 2) Extension of the run command including a continuous run feature that enables the system to
run even when the agenda is empty, and 3) A built-in communications link that uses shared memory to communicate
with other independent processes.

Introduction

This paper describes the extensions made to the CLIPS 6.02 language during the design and

implementation of a Situation Assessment (SA) expert system for use aboard Army helicopters.
An SA system uses data gathered from external environmental sensors, intelligence updates, and

pre-mission intelligence to monitor and describe the external environment. An SA system searches

for external entities of interest (EEOI), recognizes those EEOIs, and then infers high-level at-

tributes about them. An EEOI is anything that has the potential for affecting the planned rotorcraft

mission. EEOIs are primarily (although not necessarily) enemy forces. In order for the system to
perform the inferences necessary to develop an assessment of the current situation, it must utilize

extensive knowledge about the EEOIs including knowledge about their doctrine, capabilities, prob-
able mission objectives, intentions, plans, and goals_ All of these elements combine to form a com-

plete situation description. For a thorough description of the domain problem see [ 1].

The SA system has been implemented in an extended version of CLIPS called PalymSys TM.

The SA system implementation makes use of two domain blackboards - current assessment and

predicted assessment, as well as a control blackboard for overall control of the system. Palym-

Sys TM provides a reasoning under uncertainty mechanism that handles contradictory and partially

contradictory hypotheses and allows multiple hypotheses to coexist. A continuous run option has
been added that allows the system to run even when the agenda is empty. Continuous run enables

the system to wait for new environmental state data to be provided by the system's sensor sub-

systems. As new data becomes available, additional reasoning is then performed.

Blackboards

The SA system uses a blackboard architecture as a paradigm for solving the situation assess-

ment problem. The blackboard architecture approach to problem solving has been a popular model

for expert system design since the development of the Hearsay-II speech understanding program
in the 1970s. It also serves as a framework for the blackboard control architecture - an extension

of the blackboard architecture - which is the method of control used in the SA system. The black-
board model for problem solving consists of three primary elements [2, 3]:

Knowledge Sources: The knowledge necessary to solve the problem is partitioned into sep-

arate and independent knowledge sources. The independence of knowledge sources means that

major modifications to the system should not be necessary when more rules are added to the sys-
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tem. In CLIPS and PalymSys rM, knowledge sources take the form of rules.
Blackboard Data Structure: A global data structure where knowledge that has been brought

to bear on the problem is stored. The blackboard represents the current state of the problem solu-

tion. The system attempts to combine and extend partial solutions that span a portion of the black-

board into a complete problem solution. Communication between knowledge sources takes place

solely via the blackboard. In CLIPS, a blackboard data structure can be represented by objects that

encapsulate the knowledge at each level. The knowledge is contributed by the consequent of rules
whose antecedent has been satisfied.

Control: Each of the knowledge sources opportunistically contributes to the overall problem

solution. Each knowledge source is responsible for knowing the conditions under which it will be

able to contribute to the problem solution. In CLIPS, this means deciding which rule or set of rules

should fire next given the current state of the blackboards. Our method for achieving this is the use
of the control blackboard architecture. The control blackboard is an extension of the traditional

blackboard architecture and will be discussed in detail later in this paper.

Control
Blackboard

_1,1.1

Figure 1. The Situation Assessment System Architecture

The SA system uses three concurrently executing blackboards for developing a problem so-
lution. These are a prediction blackboard, an assessment blackboard, and a control blackboard.

Each blackboard provides storage for the problem solution state data. The assessment blackboard

contains the current situation description and is primarily concerned with the current intentions, ca-

pabilities, and commitments of EEOIs. The prediction blackboard contains predictions for EEOI
behavior and the predicted situation description. The control blackboard contains the knowledge

that manages and prioritizes all of the rules and provides for overall control of system problem-

solving behavior.

Designing the SA Assessment Blackboard

The blackboard model provides only a general model for problem solving. It falls far short

of an engineering specification for actually developing a complete blackboard system in CLIPS.

However, this general model does provide significant insight in how to implement complex knowl-

edge-based systems. The first step in designing a blackboard for a given domain problem is to sub-
divide the problem into discrete subproblems. Each subproblem represents roughly an independent
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area of expertise. The subproblems are then organized into a hierarchy of levels from least to most

abstract. Correctly identifying the problem hierarchically is crucial and will often be the primary
factor that determines the effectiveness of the problem-solving system (or whether the problem can
be solved at all). Blackboards sometimes have multiple blackboard panels, each with their own set

of levels. That is, the solution space can be segmented into semi-independent partitions.
The knowledge sources used by the system are CLIPS rules that have access to the informa-

tion on the blackboard. Communication and interaction among rules is solely via the blackboard

data structure. Even knowledge sources on the same level must share information through the
blackboard. Encoded within each knowledge source are the conditions under which it can contrib-
ute to the problem solution.

Figure 2 is an illustration of the assessment blackboard in the SA system. The assessment

blackboard is divided into a seven-tiered hierarchy. These levels are concerned with developing
an environmental state description, characterizing an EEOI, interpreting EEOI plans, roles, and in-
tents and developing a summary description of the overall situation. Each level of the assessment

blackboard is a part-of hierarchy that represents a portion of the situation assessment solution for

a particular EEOI. There is a gradual abstraction of the problem as higher levels on the blackboard

are reached. Information (properties) of objects on one level serve as inputs to a set of rules which,

in turn, place new information on the same or adjacent levels. During the problem-solving process,
more advanced hypotheses and inferences are placed at higher levels of the blackboard.

The blackboard architecture provides a model for the overall problem-solving (inferencing)
process. This model is used to structure the problem domain and identifies the knowledge sources
needed to solve the problem. While knowledge sources are independent and each contributes to a

partial solution, each knowledge source must be designed to fit into the high-level problem-solving
blackboard hierarchy created by the system designer.

• ltu_lon Status Du_,rlpllon Amn_,,tLev_

1 (t)

_ (2)

(4)

(6)

Figure 2. The Assessment Blackboard

Using CLIPS Objects as the Blackboard

Information on the assessment blackboard is represented as CLIPS objects. Figure 3 shows
the object representation for knowledge in one of the SA modules. This figure shows the structure
in the global plan function (GPF) module at the Role Classification level of the blackboard hierar-
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chy.
A multi-agentplan hypothesisobject is createdby the systemto representthe high-level

multi-agentplanof agroupof EEOIswhereeachhasthesamehigh-levelmissionobjective.Multi-
agenthypothesesandtheir associatedentityplansarestoredasobjectson theblackboard.An en-
tity planobjectcontainsthesequenceof planelements(activities)thataparticularEEOImustac-
tually performwithin thecontextof theassociatedmulti-agenthypothesis.Forinstance,anEEOI's
multi-agentplan might be to capturea refuelingdepot. A numberof EEOIswill be neededto
achievethis objectiveincludinga securityforce,a mainattackforce,and surveillancefor the at-
tackingforce.TheEEOI'sentityplanmightthenbesurveillance for the attacking force. The multi-

agent hypothesis object called capture refueling depot encapsulates information local to the role
classification level like formation information, hypothesized locations, and typical vehicle types.

Other objects can access this information only through the multi-agent hypothesis object's defmes-

sage handlers.

Multi-Agent Hypthests Object

Objective: Capture Refueling Depot
Formation:

yp¢_sized Location:

Entity Plan Instance LI

Entity Plan Objects

Plan: Surveillance

Hypothesized Location:

Plan Element Instance:

( )

Plan
Belief
Objects

Plan: Surveillance
Entity 4
beliel

Plan: Main Attack

Hypothesized Location:

Plan Element Instance

( )

I
Plan: Main Attack |
Entity 12 1belief OO•••

Plan
Entity t8 I I

II
g4138

Figure 3. Blackboard Object Structure

The capture refueling depot object has a multislot field that contains the list of entity plan

instances necessary to carry out its objective. Objects at different blackboard levels which are per-

manently linked are connected via instance lists. The entity plan instances, in turn, contain the lists

of plan elements necessary to carry out the entity-level plan. The plan element lists are encapsu-
lated within the entity plan objects. When the need to do so arises, entity plan objects will search

for plan belief objects that correspond to their plan via pattern matching. They search for plan be-

lief objects instead of parsing a pre-defined list because the links in this case are not permanent.

The plan belief objects are entity specific and store the degree of belief in which the system believes

that a particular EEOI is performing a particular plan. An EEOI may change entity plans or the

system may gather evidence that leads it to believe the EEOI is actually performing a different plan.
Thus the links between entity plan objects and plan belief objects will change over time.

CLIPS Objects are an ideal data structure for blackboard implementation because they offer

encapsulation and easy processing of lists. Recall that the essence of the blackboard approach is
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thathigher levelssynthesizetheknowledgefrom thelower levels. Theobjectsat oneblackboard
levelwill typically needaccessto a list of conclusionsfrom theprecedinglevels. In ourapproach,
objectsarealwayslookingdowntheblackboard,askingotherobjectsfor only the informationthey
need.Theknowledgeateachblackboardlevel is well encapsulated.Knowledgesourcescanthus
be formulatedgenerically.
The Control Blackboard Architecture

At each point in the problem solving process there are typically a number of knowledge
sources that can contribute to the problem solution. Every intelligent system must solve the control

problem: i.e., determine which knowledge source should next be brought to bear on the problem

solution. In order to solve the control problem it is necessary that control decision making be

viewed as a separate problem-solving task. The system must plan problem-solving actions using

strategies and heuristics that will help it solve the control problem while balancing efficiency and

correctness. The system must become aware of how it solves problems and intelligently guide the
problem-solving process.

Explicitly solving the control problem involves providing a body of meta-level (heuristic)
knowledge about the domain that is used to guide the control planning process [4]. With such

knowledge, the system can reason explicitly about control because the system has access to all of
the knowledge that influences control decisions. Meta-level rules then choose domain rules or sets

of domain rules that are most appropriate for the current problem-solving situation.

Control knowledge sources interact solely via the control blackboard. The control black-

board is where control knowledge sources post all currently relevant meta-level system knowledge.
Partial and complete control plans are stored here. The system also posts high-level control heu-
ristics and problem-solving strategies on the control blackboard.

A well designed control mechanism can make sophisticated meta-level decisions about the
problem-solving process. It will seek to make desirable actions more feasible and feasible actions

more desirable. It will make plans to seek out important obtainable information when that infor-

mation is missing. The control mechanism must carefully balance the time spent solving control

problems with time spent carrying out domain tasks. It must be aware of how it is solving domain
problems and change problem-solving methods to match the situation requirements.

The Control Problem in SA

The SA system is a real-time system that must perform complex inferences within very de-

manding time constraints. Control is critical in a real-time system because by definition problems
must be solved before a deadline. The SA system has a set of meta-level control rules that interact

via the control blackboard. The control rule set uses heuristics to evaluate situation characteristics

which are used to choose one or more problems from a pool of several competing domain prob-
lems. Once the important domain problems are chosen, an efficient control plan is constructed to

solve them. A control plan consists of a series of rule groups, or modules, which will be sequen-

tially accessed by the system. A message to work with a specific entity is frequently sent along
with the control plan.

Control planning is a way of incorporating efficiency into the system. The meta-level priority
criteria do not have to be recalculated every cycle while the system is following an established con-

trol plan. The system balances the degree of commitment to the execution of control plans with a
variable sensitivity to run-time conditions [5]. The degree of commitment is a function of the un-

certainty about the helicopter's actual environment. If the situation is dangerous, the system will
lower its commitment to the control plan and heighten its sensitivity to run-time conditions (i.e.,
incoming sensor data).

Figure 4 is a diagram of the control blackboard used in SA. As in the assessment and predic-
tion blackboards, a multilevel hierarchical blackboard structure is used. The policy level is where
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global focusing decisions are stored. These are heuristically generated at run-time depending on
the state of the problem-solving situation. The problem level is where domain problems presented

to the system are placed. The strategy level is where strategies (high-level general descriptions of

sequences of actions) are stored. Generating a strategy is the first step in making a plan. Strategy

decisions are posted at the strategy level for all accepted problems. A strategy decision is nothing
more than a constraint on future actions. The focus level is equivalent to the strategy level but is

populated by more specific strategies called foci. The action level represents the actual sequence
of actions chosen by the system to solve the problem [6]. The action level is implemented by the

CLIPS agenda mechanism.

Policy Level

Problem Level

Strategy Level

Focus Level

Action Level

Figure 4.

GlobalFocus

ProblemRequests

High-LevelSolutions

FocusedSolution

Sequenceof Knowledge
Sources

94134

Control Blackboard Hierarchy

Meta Control Plans

The knowledge represented on each of the control blackboard levels increases in abstraction

from the bottom level to the top level. However, control is a top-down inferencing process. Unlike

the domain blackboards, knowledge at the higher blackboard levels serves as input for the knowl-

edge sources at the lower control blackboard levels. A meta control plan solves the control problem

for the control part of the SA system. A meta control plan object is constructed at system start-up

that contains the following sequence of phases:
• check for new data

• post loci at policy level
• remove problems (if appropriate)

• request problems

• accept problems

• prioritize problems

• choose problems
• formulate strategy

• formulate plan
• execute a control plan

• record any plan completions and perform system maintenance

The control rules are partitioned by phase. There is a rule set for accepting problems, prior-

itizing problems, etc. The early phases deal with the higher levels on the control blackboard. The

system will cycle through the meta control plan sequentially unless a message is passed from one
module to another.

One situation in which message passing occurs is when the system suspects that a new do-

main problem should be reevaluated in light of the particular domain problem that has been chosen.
For instance, when the system is making a plan to do a situation assessment, it will reconsider data

that has not yet been integrated into the system. The data may not be intrinsically important. But

in the context of doing a situation assessment, the system may decide to integrate part of the un-

382



processeddatabeforedoingthesituationassessment.Integratingthedatafirst oftenaddsvalueto

the situation assessment because the system will have more information on which to base its as-

sessment. This added value is added to the priority of the data integration plan request. The system

goes back to the prioritize problem phase and if the data adds enough value to the situation assess-

ment problem, it constructs an object to solve the integrate data problem. The data integration

problem instance is added to the list of plan elements in the situation assessment plan object. The

actual plan elements to integrate the data into the system are encapsulated within the data integra-
tion control plan object.

Heuristics used by the Control Planner

A real-time SA system is continuously supplied with sensor updates, pilot requests for infor-

mation, anticipation of possible future events, and a plethora of cognitive actions that must be taken

in order to assess the current situation. Thus, most of the work of the control part of the system is

in deciding what problem to solve. Following are the five domain problems that the SA system
solves:

1)

2)

3)

4)

5)

Integrate new data into the domain blackboards
Focus sensors

Generate a current situation assessment

Generate a predicted assessment for some opportune time in the future

Generate a predicted assessment for time T seconds from the present

In order to solve the control problem, the SA system opportunistically chooses problems from

among these five domain problems and makes efficient plans to solve them. This approach pro-
vides a built-in well-defined external interface to the system. Problems presented to the SA system

by an external agent (e.g., an external system planner or the pilot) are placed in with the problems
the SA system has presented to itself at the problem level of the control blackboard.

In order to illustrate the meta-level heuristics that the SA system uses to choose from among

competing domain problems, we provide an example of how the SA system integrates new data

into the domain blackboard (problem 1 above). The SA system places incoming sensor and intel-

ligence data at the survey level of the assessment blackboard. This new data triggers a problem

request at the problem level of the control blackboard. When the SA system decides to integrate
the new data, the control rules make and carry out a plan that consists of an ordered sequence of

domain modules which will be sequentially examined by the SA system.

All incoming information is rated for importance. EEOIs that have already been encountered

by the system are given Entity Assessment Ratings (EARs):

EAR = [Confirmed(danger), Plausible(danger)]

The EAR is a belief function that represents the degree to which an EEOI is a threat to the

rotorcraft. The confirmed danger is the degree to which the system has confirmed that an EEOI is

a danger to ownship. The plausible danger (or potential danger) is the worst-case danger that an

EEOI presents to ownship at this time. Both of these numbers must lie in the range [0, 1]. The

plausible danger is always greater than or equal to the confirmed danger. The less the system

knows about an EEOI, the greater the difference between the plausible and the confirmed danger.

The EAR is synthesized into an Interesting Rating:

Interesting Rating = 0.7 * Confirmed danger + 1.3 * ability_garner0 * (Plausible danger - Con-

firmed danger)

The system evaluates EEOIs as "more interesting" if there is a large gap between the plausi-

ble and confirmed dangers. This means EEOIs that might be dangerous but about which there is
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little knowledge will be rated or ranked more interesting. Ability_.garner is a function that calcu-

lates the degree to which the system thinks it currently has the ability to gather more information
about the EEOI. When new data come in about an EEOI, we can use that entities' previously cal-

culated Interesting Ratings to prioritize it.
When data about a previously unencountered entity arrives, SA the system favors the integra-

tion of the information into the domain blackboard if the data is about a nearby EEOI. The SA sys-

tem especially favors it if automatic target recognition (ATR) has managed to already confirm an

EEOI's vehicle type. Data about new EEOIs is considered intrinsically more important than data

about previously encountered entities. The SA system attempts to reject duplicate information be-

fore any attempt is made to rate it or integrate it. The control planner always attempts to control

the sensors to gain more information about interesting EEOIs.
The amount of time spent generating and evaluating heuristics must be balanced with the

amount of time spent executing domain rules. It is possible to expend too many computational re-

sources prioritizing problems and not enough time actively solving them. Entity Assessment Rat-

ings and Interesting Ratings require processing resources for calculation. However, they must be
calculated anyway for use by other parts of the system and these calculations are entirely procedur-

al or algorithmic and are therefore computationaUy relatively inexpensive. Very little extra pro-
cessing power is required to rate entities in this way. Such overlapping requirements often enable

more sophisticated meta-levei control knowledge to be produced. The results of the inferencing

process represented at various blackboard levels by symbolic abstractions can thus be used as input
for procedural/algorithmic computation that, in turn, produces useful metal-level control knowl-

edge.

Using Dynamic Salience for Control

The planning approach to control has the disadvantage of always firing each of the rules that

pertain to the chosen domain problem within the modules listed in the control plan. Another layer
of control can be attained by directing the system to fire only the subset of eligible domain rules

that best apply to the current domain problem. This flexibility is achieved within PalymSys TM by

using an expanded form of the salience command.
The modifications to the salience command in PalymSys TM are based on the work done by

Robert Orchard of the National Research Council of Canada in his extended version of CLIPS

called BB_CLIPS [7]. The added syntax, called rule features, arc descriptive characteristics of the

knowledge contained in a rule that are placed within the antecedent of the rule.

;; RULE: pred_pe2

;;

;; If the EEOI will be able to see ownship and will be able to hit ownship and the EEOI's

;; plan is combat_recon, main_attack, close_air_support, artillery, or guard then

;; EE will probably be engaging you in the future (60%). If not, then we can't be sure

;; what the EE_I will do next (40%).

(defrule pred_plan_element 12

(declare ; feature list

(salience 200) ; salience type

(reliability 35) ; integer type

(importance 25) ; integer type

(efficiency medium) ) ; set type

(Module_focus (focus domain) (sub_focus pred_plar_element) (entity_focus all) (time_focus

?time&: (>= ?time3) ) (level policy) (BB CONTROL) )

(object (is-a EEOI_Pred_location_long) (label ?name) (dist_from_ownship ?dist&: (< ?dist

6)) (level interpretation)(BB PREDICTION)) ;; all EEs < 6kin away.

(object (is-a EEOI_Precl_capability_long) (label ?name) (see_capability

?seecap&: (>= ?seecap .5) ) (hit_capability ?hc&: (> ?hc .5) ) (level pred_cap) (BB ASSESSMENT) )

(object (is-a EEOI_Plan) (label ?name) (propagation ?prop)
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(type ?type&: (members ?type (creates combat_recon long_range_recon guard_forward

guard_flank guard_rear main_attack close_air_support)))(level plan_interp)(BB ASSESSMENT))
=>

(assert_belief ?name pred_plan_element ?prop " .6 ENGAGE_OWNSHIP .4 ALL")

)

Each feature has an associated dynamic salience value determined by its feature arguments.

PalymSys TM has a combining function that evaluates the salience of each rule between rule firings.
The feature argument itself is a pointer to a dynamic data structure of salience values that is mod-

ified by control rules at run-time. For instance, if the system is suddenly faced with a time con-

straint, a control decision can be made to globally raise the value of the efficiency feature.

A new feature in CLIPS 6.0 is the (set-salience-evaluation every-cycle) command which en-

ables salience values to be calculated dynamically at run-time between rule firings. It is possible

to achieve the same functionality described above from within the CLIPS 6.0 shell by placing a

function as the argument for the salience command. Between rule firings, the function dynamically
computes salience values which are based on global control variables whose values have been de-
termined by control decisions.

A Hybrid PalymSysrM/C++ Belief Network

Reasoning under uncertainty is a necessity for a situation assessment system. The SA system

must make prescient inferences about such things as an EEOrs plan or the associated elements
(steps) in that plan. The EEOI's plans and plan elements cannot be known for certain until various

activities are explicitly observed. Other inferences, such as an EEOI's intent or an EEOI'spredicted

plan element, can never be known for certain. Hypotheses must be based on incomplete and unre-
liable evidence because the battlefield is a complex, uncertain environment. Reasoning under un-

certainty requires a probabilistic model of reasoning that supports reasoning using contradictory
and partially contradictory hypotheses in which the system has varying degrees of confidence.

PalymSys TM enables the user to construct a Dempster-Shafer (D-S) belief network quite eas-
ily. A command line interface allows the user to specify size, structure and number of instances of

the network at run time. A belief network propagates the uncertainty associated with a particular
piece of knowledge throughout the entire hierarchy of hypotheses that depend upon it. The SA con-

trol planner in conjunction with the Rete Pattern Matching algorithm handles the belief propagation
through the system hierarchy. When rules are added to the system, no modifications of existing

C++ or PalymSys TM code are necessary. By placing a single function call on the consequent of the

added rule(s), the system will incorporate the new rule(s) into the belief network automatically. A
formal explanation of Dempster-Shafer theory is beyond the scope of this paper. Such detailed pre-
sentations can be found in [8, 9, 10]. However, the CLIPS modifications described here can be

applied to a monotonic, feed-forward belief network of any type (i.e., Bayesian).

A frame of discernment is a set of mutually exclusive hypotheses. Exactly one hypothesis in
a frame of discernment is true at any one time. Each module that uses D-S reasoning in SA has its

own frame of discernment. For example, the frame of discernment corresponding to the Plan Ele-

ment module is the set of fourteen distinct plan elements that an entity is capable of performing

within the context of all possible plans. When an entity is encountered, it is assumed to be perform-

ing one and exactly one of these plan elements. The purpose of the plan element module is to assign

belief values to each of the members of the plan element frame of discernment. A set of propaga-

tion values for the plan element frame of discernment is also calculated. The propagation values
serve as input to other frames of discernment that use plan elements as evidence.

Recall that the SA system follows entity specific control plans in order to integrate new data
into the system. A control plan is an ordered list of modules that the system will sequentially visit

to solve a domain problem. The exact order of the control plan will vary depending on what type

of data is being integrated into the system. When a control plan element is executed, a particular
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modulefires its rules,assignsbelief to the members of its frame of discernment, and then control

proceeds to the next module in the control plan which is typically on the next higher level within
the domain blackboard hierarchy.

A typical SA domain rule within the belief network will look much like the following rule
from the Plan module:

RULEz plan_rulel2

Descziption s
;; If the EE's current Plan Element is Reporting then his Plan might be (40%)

;; surveillance, combat recon, or long range recon. It also might be, to a

;; slightly lesser degree (30%), guard forward, guard flank, or guard rear. If

;; it's not in those two sets, then the EE could be performing any Plan (30%).

(defrule plan_rule12

(Module focus (focus domain)(sub_focus plan)(entity_focus ?name)

(level policy)(BB CONTROL))

(object (is-a EEOI Plan element) (label ?name) (type report)

(propagation ?prop_value&: (> ?prop 0)) (level plan_interp) (BB ASSESSMENT) )
=>

(assert_belief ?name Plan_Module ?prop_value ".4 SUR CRP LRRP .3 GFR GFL GR .3 ALL')

)

The variable name is needed as a tag because SA makes an instance of the belief network for
each new EEOI encountered. In this case, the assert_belief function places the belief into the frame

of discernment associated with the Plan module with a propagation value of prop_value. The

Module_focus template values in the rule will allow this rule to fire only when the system is firing
the rules on the assessment blackboard in the plan module. In this way, the control plan assures

that the rules in each frame of discernment for a particular EEOI are finished firing before advanc-

ing up to higher levels on the blackboard. The same technique can be used with any monotonic

feed-forward blackboard belief propagation scheme.
When evidence is obtained from another frame of discernment, as is the case with the

EEOI_pian_element object in the rule above, the propagation value is also sent to the assert_belief
function. Evidence without a propagation value associated with it is assumed to have a probability

of truth of one. However, the system can easily adapt to any uncertain data by attaching a propa-

gation value to them.
The last rule fired within each module calls the function get_belief to access the appropriate

belief and propagation values for the module's frame of discernment. The propagation values will

be passed to the next level up in the blackboard hierarchy via the propagation slot in the object that
corresponds to the current entity and the current blackboard level.

New domain rules are easily added to the system by placing the assert_belief function on their

RHS. No modifications to the reasoning under uncertainty function code are required since prop-

agation is handled entirely by the Rete Pattern Matching algorithm and the SA control planner.

Simulation and Test Environment Interface

SA uses interprocess communication to communicate with our rotorcraft mission simulation
and test environment (STE). The STE is a graphical simulation test bed written in C++ and imple-

mented on a RS/6000 workstation. During simulation runs, the STE sends SA sensor information

and SA sends the STE directional parameters to control the sensors. A communications class was

written for the STE and integrated with PalymSys TM. Shared memory in our system is accessed

via the standard system C libraries<sys/shm.h> and <sys/types.h>. More Specifically, the STE
uses the function calls shmat, shmget, shmdt to attach a process, grab the shared memory and detach

the process, respectively.
Standard CLIPS terminates when the agenda is empty. PalymSys TM can be directed to run

continuously even though the agenda is empty by adding an optional argument to the run com-

mand. The inference engine will idle, waiting for facts to be asserted into the system. This capa-
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bility is essentialwheneverthe systemdependson an independentprocess,like the STE, as a
sourcefor factassertions.

Three functionswereembeddedinto PalymSysTM in order to communicate with the STE.

One function checks the communications link to see if information had been passed over from the

STE. The maximum buffer size was 200 characters, so the PalymSys TM function got the name of
a file from shared memory that had just been created by the STE. Another PalymSys TM function

reads the file just created by the STE and asserts the contents as facts into the PalymSys TM fact base

using the AssertString CLIPS C library call. Finally, another function lets the STE know via shared

memory when SA has sent it information via file transfer. This two-way real-time interprocess
communication provides a realistic simulation of a rotorcraft environment.

Summary and Conclusions:

We have implemented a situation assessment blackboard expert system in PalymSys TM -- an

extended version of CLIPS. Blackboards are an excellent paradigm for CLIPS expert system im-

plementations. The control blackboard architecture is especially well-suited to real-time applica-

tions like SA. We developed a control planner in PalymSys TM that chooses the most important

problems to solve based on complex meta-level situation characteristics. The control planner cre-

ates domain plans to solve the problems that it chooses. SA uses a monotonic feed-forward Demp-
ster-Shafer belief network implemented in C++. The size and number of instances of the network

is dynamic and completely controlled at run-time from the PalymSys TM shell. Finally, we inter-
faced the SA system to our Simulation and Test Environment using interprocess communication

techniques. A continuous run feature was added which enables the inference engine to idle even
when the agenda is empty.
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ABSTRACT

In a dynamic environment, intelligent agents must be responsive to unanticipated conditions.

When such conditions occur, an intelligent agent may have to stop a previously planned and scheduled

course of actions and replan, reschedule, start new activities and initiate a new problem solving process

to successfully respond to the new conditions. Problems occur when an intelligent agent does not have

enough knowledge to properly respond to the new situation. DYNACLIPS is an implementation of a
framework for dynamic knowledge exchange among intelligent agents. Each intelligent agent is a CLIPS

shell and runs a separate process under SunOS operating system. Intelligent agents can exchange facts,
rules, and CLIPS commands at run time. Knowledge exchange among intelligent agents at run time does

not effect execution of either sender and receiver intelligent agent. Intelligent agents can keep the

knowledge temporarily or permanently. In other words, knowledge exchange among intelligent agents
would allow for a form of learning to be accomplished.

1. INTRODUCTION

Applications of expert systems to variety of problems are growing rapidly. As the size and

complexity of these systems grow, integration of independent cooperating expert systems is becoming a

potential solution approach to large scale applications. In this paper, the blackboard model of
distributed problem solving is discussed and architecture, implementation and usage of DYNACLIPS

is explained.

1.1. Distributed Problem Solving (DPS)

Distributed problem solving in artificial intelligence is a research area which deals with solving a

problem in a distributed environment through planning and cooperation among a set of intelligent
entities (i.e., agents). Each intelligent agent can run in parallel with other intelligent agents. Intelligent

agents may be geographically distributed or operate within a single computer. An intelligent agent may

possess simple processing elements or a complex rational behavior. A paramount issue in DPS is the
communication and information sharing among participating intelligent agents, necessary to produce a

solution. The blackboard model of problem solving is one of the most common approaches in the

distributed artificial intelligence area. In the following section we will focus on blackboard architecture as

a model for distributed problem solving.
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1.2. Blackboard Model of Distributed Problem Solving

The blackboard architecture (BBA) is one of the most inspiring cooperative problem solving
paradigms in artificial intelligence. The approach had generated much interest among researchers. BBA is
a relatively complex problem solving model prescribing the organization of knowledge, data and the
problem-solving behavior within an overall organization. The blackboard model is becoming a useful
tool for complex applications whose solution requires a set of separate though interrelated sources of
knowledge and expertise.

BLACKBOARDDATA

CONTROL

Figure 1. Blackboard Model For DSP

A blackboard model contains blackboard, control, and knowledge sources. Figure 1 shows a basic
blackboard model for DPS applications. The Knowledge Sources are the knowledge needed to solve the

problem; they are kept separate and independent. Each knowledge source can use different knowledge
representations techniques. The Blackboard Data is a global database that contains problem-solving
states. The knowledge sources produce changes to the blackboard that lead incrementally to the solution
of the problem being solved. Communication and interaction among the knowledge sources takes place
solely through the blackboard. The Control determines the area of the problem solving space on which
to focus. The focus of attention can be either the knowledge sources, the blackboard or a combination of

both. The solution is built one step at a time by using a cooperation of different knowledge sources. The
blackboard model is a complete parallel and distributed computation model. The parallel blackboard
model involves the parallel execution of knowledge sources and the control component. The distributed
blackboard model involves the communication of blackboard data among blackboard subsystems. The
main issue here is to decide what to communicate and where and when to send data. The blackboard
systems are being used increasingly in real time systems. Architectural extensions to the basic blackboard
model can be added to increase its performance for real time applications. [1,2,3]

1.3. An Overview of Existing BBA Tools

A number of BBA tools are reported in the literature. Here we provide an overview of some of
these systems.

BB_CLIPS ( Blackboard CLIPS) [4, 5] is an extended version of CLIPS version 4.3 developed by
National Research Council of Canada. In BB_CLIPS, each CLIPS rule or group of rules serves as a
knowledge source. The fact base of BB_CLIPS serves as the blackboard, and its agenda manager serves
as the scheduler.
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RT-1 architecture [6] is a small-scale, coarse-grained, distributed architecture based on the

blackboard model. It consists of a set of reasoning modules which share a common blackboard data and

communicate with each other by "signaling events".

PRAIS (Parallel Real-Time Artificial Intelligence Systems) [7] is an architecture for real-time

artificial intelligence system. It provides coarse-grained parallel execution based upon a virtual global

memory. PRAIS has operating system extensions for fact handling and message passing among multiple

copies of CLIPS.

MARBLE (Multiple Accessed Rete blackboard linked Experts) [8] is a system that provides

parallel environment for cooperating expert systems. Blackboard contains facts related to the problem
being solved and it is used for communication among expert systems. Each expert shell in the system

keeps a copy of the blackboard in its own fact base. Marble has been used to implement a multi-person

blackjack simulation.

AI Bus [9] is a software architecture and toolkit that supports the construction of large-scale

cooperating systems. An agent is the fundamental entity in the AI bus and communicates with other

agents via message passing. An agent has goals, plans, abilities and needs that other agents used for

cooperation.

GBB (Generic Blackboard) [10,11] is toolkit for developers needs to construct a high-performance

blackboard based applications. The focus in GBB is increasing the efficiency of blackboard access,

especially for pattern-based retrieval. GBB consist of different subsytems : a blackboard database

development subsystem, control shells, knowledge source representation languages and graphic displays
for monitoring and examining blackboard and control components. GBB is an extension of Common Lisp

and CLOS (Common Lisp Object System).

GEST (Generic Expert System Tool) [12] hasbeen developed by Georgia Tech Research Institute.

The main components of the GEST are the central blackboard data structure, independent experts or

knowledge sources and the control module. The blackboard data structure holds the current state of the

problem solving process. It is also common communication pathway among knowledge sources.

CAGE and POLIGON [13] have been developed at Stanford University. They are two different

frameworks for concurrent problem solving. CAGE is a conventional blackboard system which supports

parallelism at knowledge sources level. The knowledge source, the rules in the knowledge source, or
clauses in a rule can be executed in parallel. CAGE is a shared memory multiprocessing system.

POLIGONs' functionality is similar to CAGE.

Hearsay-II [2,3,14] is a speech understanding system developed at Carnegie-Mellon University.

Hearsay-II provides a framework that different knowledge sources cooperate to solve a problem.

More recently, significant work is being done to develop Knowledge Interchange Formats (KIFO

and Knowledge Query and Manipulation languages (KQML) by Stanford University [15,16]. KIF is a

computer-oriented language for the interchange of knowledge among disparate programs that is written

by different programmers, at different times, in different languages. KIF is not a language for the internal

representation of knowledge. When a program reads a knowledge base in KIF, it converts the knowledge
into its own internal form. When the program needs to communicate with another program, it maps its

internal data structures into KIF. KQML messages are similar to KIF expressions. Each Messages in

KQML is one piece of a dialogue between the sender and receiver programs.

2. IMPLEMENTATION OF DYNACLIPS

Using the SunOS operating system multiprocessing techniques and interprocess communication
facilities, we have developed a prototype system on a Sun platform to demonstrate the dynamic
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knowledgeexchangeamongintelligentagents.In the following sections we provide a short overview of

SunOS InterProcess Communication Facilities (IPC) and describe the implementation aspect of the
DYNACLIPS.

2.1. InterProcess Communication Facilities (IPC)

Interprocess Communication involves sharing data between processes and coordinating access to

shared data. The SunOS operating system provides several facilities and mechanism by which processes
can communicate. These include Messages, Semaphores and Shared Memory.

The Messaging facility provides processes with a means to send and receive messages, and to
queue messages for processing in an arbitrary order. Messages can be assigned specific types and each

would have an explicit length. Among other uses, this allows a server process to direct message traffic
between multiple clients on its queue. Messages sent to the queue can be of variable size. The application

programmer must insure that the queue space limitations are not exhausted when more than one process
uses the same queue. The process owning the queue must establish the read/write permissions to

allow/deny other processes access to the queue. Furthermore, it is the responsibility of the owner process
to remove the queue when it is no longer in use or prior to exiting.

Semaphores provide a mechanism by which processes can query or alter status information. They

are often used to monitor and control the availability of system resources, such as shared memory

segments. Semaphores may be operated as individual units or as elements in a set. A semaphore set
consists of a control structure and array of individual semaphores.

Shared memory allows more than one process at a time to attach a segment of physical memory to

its virtual address space. When write access is allowed for more than one process, an outside protocol or
mechanism such as a semaphore can be used to prevent contentions [17].

2.2. Architecture of DYNACLIPS

In this section we provide an overview and discussion of each component of the DYNACLIPS.

Figure 2 represents the overall architecture of the DYNACLIPS. Shared memory has been used to

implement the system main blackboard to broadcast messages from control to intelligent agents. Message
queues have been used to transfer messages from the intelligent agents to the control. Semaphores are
used to make intelligent agents and control to sleep or wake up in order to reduce the load on CPU. Each

intelligent agent and control has an input/output port to the world outside of the application framework

to interface with the other processes outside of their environment. These outside processes might be any
program that uses the application framework. In DYNACLIPS, intelligent agents and control can also
use IPC facilities to interface with the outside programs.

2.3. Control

The control component of the system has been implemented using the C programming language.
It runs as a separate process and communicates with the other processes using IPC facilities. The control

can be loaded and executed by entering the word "control" at SunOS prompt. The control always has to

be loaded first. Once the control is loaded, it creates the three incoming control message queues for the

requests coming from the intelligent agents, one shared memory to be used as the main system
blackboard and two semophores for control and intelligent agents. The control has read/write access to

the main system blackboard and has only read access from the message queues. If there is no request
from intelligent agents, control sleeps until any agent makes a request.
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EXTERNAL APPLICATIONS 1

BLACKBOARD

Shared Memory

CONTROL

External A.pplications

Blackboard Request

Command Queue

nal Queue

Semaphore

Figure 2. Architecture of DYNACLIPS

The DYNACLIPS takes advantage of the multiprocessing capabilities of the SunOS operating

system. A message facility has been used for setting up a communication link from the intelligent agents
to the control. The control creates incoming queues to receive messages from the intelligent agents. These

control message queues use "First-In First-Out" (FIFO) methodology as shown in Figure 3.

FIFO QUEUE

Messages

Process that has only WRITE attach

Process that has only READ attach

Figure 3. Message Transfer Among Processes
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In order to communicate with the control process, intelligent agents send their requests to the

control message queues. Intelligent agents have only write permission to these queues. Message queue
facility of IPC can also be utilized to allow the control module and/or intelligent agents to communicate
with other application programs running outside of their environment.
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2.4. Blackboard

The blackboard is a shared memory that holds information and knowledge that intelligent agents
use. The blackboard is organized by the control component. The blackboard has four different members

as shown in Figure 4. These members are: 1) Blackboard name which holds the name of the blackboard

that is being used, this is necessary if multiple blackboards are in use, 2) Blackboard status which is a

counter that is incremented after each update of the blackboard, 3) Private message area which is used by

the control component to send system related messages to the intelligent agents, 4) The knowledge area
which holds, rules, facts and commands that needs to be broadcast to the intelligent agents.

Shared Memory facility of IPC has been used to broadcast messages to all intelligent agents via

the control. Figure 5 represents broadcasting data using shared memory configuration. When a process
that has a write attach, writes a message to the shared memory, this message will be visible to all

processes that have read attach to shared memory. When there is more than one process able to write to

shared memory, semaphores should be used to prevent processes accessing the same message space at
the same time. In DYNACLIPS semaphores were not used for shared memory, because the control

component is the only process that has read and write accesses to the shared memory and intelligent
agents can only read from the shared memory.

In DYNACLIPS, there is a local blackboard for each intelligent agent and one main blackboard for

the control. The DYNACLIPS uses the shared memory facility to implement the main system blackboard.

This implementation was possible because all intelligent agents run on the same computer. If intelligent
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agentsweredistributedon differentcomputersystems,thenacopyof themainblackboardneedsto be
createdandmaintained in each computer system.

._._-_--_Sh ared Memory

Process that has only WRITE attach.

[Y_Y_ Process that has only READ attach

Figure 5. Message Broadcasting With Shared Memory

2.5. Intelligent Agents

An intelligent agent can be any application, such as an expert system shell, that is able to use IPC
facilities on the SunOS operating system. In this prototype system, CLIPS (C Language Production

System) was used as intelligent agents. CLIPS [18] is an expert system shell which uses a rule-based

knowledge representation scheme. We have extended the CLIPS shell by adding a set of functions to

provide the necessary capabilities to use IPC facilities.

The following command should be executed at SunOS prompt to load and activated a CLIPS

based intelligent agent.

dynaclips <Knowledge base name > <Intelligent agent name> [Group name]

The Knowledge base name is a file that contains CLIPS rules. The Intelligent agent name and Group

name are names given to intelligent agent by the user or application program that loads this knowledge

base. Multiple copies of the CLIPS expert system shell, each representing an agent, can be loaded and

activated at the same time using the above command. Intelligent agent name and Group name are also

inserted as initial fact to intelligent agents. Following will be initial facts in the intelligent agents:

(knowledge name is <Intelligent agent name>)

(member of group < Group name>)

Once an intelligent agent is loaded, 1) it finds out the names of the control message queues and

attaches itself to the queues as a writer. 2) It finds out the name of the main blackboard and attaches
itself to it as a reader. 3) It sends a message to control component to inform that it has joined the system.

If there is no rule to fire and nothing is changed in the blackboard, an intelligent agent sleeps until

something changes in the blackboard.

As we mentioned previously, we have added number of functions to the CLIPS shell. The

following functions can be used by an intelligent agent to communicate with the control as well as with

other intelligent agents.
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(ADD BB_STR
(DEL BB STR

(CHANGE GR 0 UPNAME
(EXIT_CLIPS)

<message string> )

<message string> )

<new_group_name> )

ADD BB STR (Add BlackBoard String) is called when an intelligent agent wants to add a message
to the main blackboard. DEL BB STR (Delete BlackBoard String) is called when an intelligent agent wants

to delete a message from the main blackboard. CHANGE_GROUP_NAME is called when intelligent

agent needs to change group. EXIT_CLIPS is called when an intelligent agent is exiting from the system
permanently. In the above commands, Message string takes the following format :

"<destination> <type> <message>"

The Destination field should be the name of an intelligent agent or group currently active in the

system, or "ALL" which specifies that the message should be received by all active intelligent agents. (In
the above format, blank characters were used to separate each field.)

The Type field should be "FACT", "RULE" or "COMMAND", which describes the type of the
message in the message string. If the type is FACT, the message will be added or deleted, depending on

the functions, to shared fact base of the intelligent agent specified by the destination field. If the type is

RULE, the message will be added or deleted to the dynamic knowledge base of the intelligent agent(s) as
specified in the destination field. If the type is COMMAND, then message will be executed as a command

by the intelligent agent specified in the destination field. Commands are always removed from the main
blackboard after intelligent agents receive a copy of the blackboard.

Message can contain facts, rules or commands. Since the current implementation of the prototype

system only uses CLIPS shell to represent an intelligent agent, we have chosen to follow the syntax of

the CLIPS to represent facts, rules or commands. If another expert system shell is used to represent an
intelligent agent, this common syntax should be observed to transfer facts, rules or commands. It is the

intelligent agent's responsibility to translate this common syntax to its own internal syntax.

The following sections describe, in more detail, the process of transferring facts, rules, and
commands among intelligent agents.

2.6. Fact Transfer Among Intelligent Agents

An intelligent agent can send fact(s) to an individual intelligent agent, group of intelligent agents

or to all intelligent agents in the system. Facts stay in the main blackboard until removed by the sender
intelligent agent or by other intelligent agent(s) that has/have the permission to delete the fact.

ADD_BB_STR and DEL BB STR commands are used to insert, or remove fact(s) from the main

blackboard. The following examples show how facts transferred among intelligent agents in the system.

Given the following information :

?y is a string containing "ALL FACT Hi there, I have just joined the system"
?x is a string containing "IA-2 FACT apple is red °'

IA-2 is the name of an intelligent agent active in the system.

Then:

(ADD_BB STR ?y ) adds the message (i.e., the fact) "Hi there, I have just joined the system" to the
main blackboard as a fact and all intelligent agents insert this fact to their internal shared fact base.
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(DEL_BB_STR ?y ) deletes the message (i.e., the fact) "Hi there, I have just joined the system" from the
main blackboard as well as from internal shared fact base of any intelligent agent that has this fact in

its shared fact base.

(ADD_BB_STR ?x ) adds "apple is red"

to insert this fact to its shared fact base.

(DEL BB_STR ?x ) deletes "apple is red"

fact from its shared fact base.

to the main blackboard as a fact and only IA-2 is allowed

from the main blackboard and causes IA-2 to remove this

2.7. Command Transfer Among Intelligent Agents

An intelligent agent can send command(s) to an individual intelligent agent, group of intelligent

agents or to all intelligent agents in the system. Commands do not remain on the main blackboard, the

receiver intelligent agent executes the command immediately upon its arrival. Commands are deleted by
the receiver intelligent agent(s) as soon as they are executed. ADD BB STR function should be used for

transferring commands among intelligent agents. DEL BB STR function is not available on COMMAND

type. Following examples demonstrate how commands are transferred among intelligent agents. In the
following examples all the commands are standard commands available in the CLIPS expert system shell.

Given the following information :

is a string containing "ALL COMMAND (rules)"
?x is a string containing "IA-2 COMMAND (watch facts)"

?z is a string containing "GROUP1 COMMAND (CHANGE_GROUP_NAME "GROUP2")"

IA-2 is the name of the an intelligent agent active in the system.

Then:

(ADD_BB_STR ?y ) all intelligent agents in the system execute (rules) command which means print

all rules in the intelligent agent knowledge base.

(ADD_BB_STR ?x ) IA-2 executes (watch facts ) command.

(ADD_BBSTR ?z ) all intelligent agents in the GROUP1 will change their group name to GROUI_.

All CLIPS commands are supported by the DYNACLIPS. Hence, an intelligent agent can modify

the knowledge of other intelligent agents via sending the appropriate command. Application

programmer should be careful when designing the system since it is possible to remove static knowledge
and local facts of the intelligent agent receiving the commands.

2.8. Rule Transfer Among Intelligent Agent

An intelligent agent can send rule(s) to an individual intelligent agent, group of intelligent agents

or to all intelligent agents in the system. Rules stay on the main blackboard until removed by the sender

intelligent agent or other intelligent agent(s) that has the right permission to delete the rule. CLIPS
format should be followed to represent rules. The type RULE should be used in the type field of the

message string. ADD_BB STR and DEL_BB_STR commands can be used to add or delete rules from the
main blackboard. The following presents examples for transferring rule among intelligent agents.

Given the following information :

?x is a string containing "IA-2 RULE (defrule rule1 (apple is red) => (facts)) "

is a string containing "ALL RULE (defrule rule2 (red is color) => (facts)) "
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IA-2 is the name of an intelligent agent active in the system.

Then :

(ADD BB STR ?x) rule1 will be added to the main blackboard and only IA-2 can insert the rule1
into its dynamic knowledge base.

(ADD_BB_STR ?y ) rule2 will be added to the main blackboard and all intelligent agents can insert
rule2 into their dynamic knowledge base.

2.9. Knowledge Transfer Among Intelligent Agents

Knowledge can be exchanged among intelligent agents by using combination of facts, rules and

commands transfers. Different methodologies can be used for knowledge transfer; knowledge can be
exchanged among intelligent agents in temporary or permanent bases.

Under temporary knowledge transfer option, the sender intelligent agent specifies the rule(s)

that needs to be transferred as well as specifying when the rules needs to be removed from dynamic
knowledge base of the receiver intelligent agent. The following example shows how to transfer a
temporary knowledge among intelligent agents.

Given the following information :

?x is a string that contains the following :

"ALL COMMAND (defrule rule1 (lights are on) =>

(turn of the lights)

(assert (lights are off) )) "

?y is a string that contains the following:

"ALL COMMAND (defrule rule2 (lights are off) =>

(undefrule rule1)

(undefrule rule2) ) "

Then:

(ADD BB STR ?x)

(ADD_BB_STR ?y)

In the above example, two rules were broadcasted to all intelligent agents in the system. All
intelligent agents will insert these two rules into their dynamic knowledge base. The rules will remain in

the intelligent agent's dynamic knowledge base until rule1 is fired. Rule2 will be fired after rule1, which

would cause rule1 and itself to be removed from the intelligent agents' dynamic knowledge bases. Using
type COMMAND will cause that the two rules be deleted from the main blackboard as soon as all

intelligent agents have read them into their dynamic knowledge base. By eliminating the second function

(i.e., (ADD BB STR ?y) ) from the previous example, the rule can be placed permanently in the receiver

intelligent agents' knowledge bases. Hence, the knowledge encoded in the rule can be used by the

receiver intelligent agent from that point on. The following example demonstrates this concept.

Given the following information

?x is a string that contains the following:
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"ALL COMMAND (defrule rule1 (lights are on) =>

(turn of the lights)

(assert (lights are off) ) "

Then:

(ADD_BB STR ?x)

Type RULE should be used to transfer knowledge when the intelligent agents are joining, exiting

or re-joining the framework continuously. In this case, knowledge stays in the main blackboard until

deleted explicitly by the sender intelligent agent.

3. CONCLUSIONS AND FURTHER STUDIES

By introducing simple communication protocols among intelligent agents, we have introduced a

framework through which intelligent agents can exchange knowledge in a dynamic environment. Using
the DYNACLIPS common knowledge can be maintained by one intelligent agent and broadcasted to

the other intelligent agents when necessary.

In a dynamic environment, intelligent agents must be responsive to unanticipated conditions.
When such conditions occur, an intelligent agent may be required to terminate previously planned and

scheduled courses of action, and replan, reschedule, start new activities, and initiate a new problem

solving process, in order to successfully respond to the new conditions. Problems occur when an

intelligent agent does not have sufficient knowledge to properly respond to the new condition. In order

to successfully respond to unexpected events in dynamic environments, it is imperative to have the

capability of dynamic knowledge exchange among intelligent agents.

Control

Blackboard

Intelligent Agent

Supervisor Intelligent Agent

Figure 6. An Example of a Framework which Includes Multilayer Aspects

We believe that dynamic knowledge exchange would be an important feature for any application

in which unanticipated conditions or events occur. Using the proposed dynamic knowledge exchange

capability, cooperative problem solving sessions can be initiated where each intelligent agent can share its

problem relevant knowledge with other intelligent agents to resolve the problem. An obvious advantage
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of thiscapabilityis the elimination of redundant knowledge and hence the improved utilization of the

system memory capacity. In addition, by using this framework a form of learning can take place and thus
additional problem solving knowledge is created.

The basic framework presented in this research could be extended to include a multilayer

environment. This can be done by providing supervisory blackboard and control components to create a
single entity by combining separate frameworks. (See Figure 6.)

The proposed framework can easily be expanded to accommodate more than one blackboard

when it is necessary. In this case one control module is associated with each blackboard as in Figure 7.
The basic process of communication with the control modules would be the same as presented in the
previous sections.
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Figure 7. Using Multiple Blackboard

The prototype system is currently running on a single computer system using multiprocessing

facilities. By using networking, it is possible to extend the system functionality to support distributed
environments. Hence, intelligent agents can be geographically distributed but able to communicate via
the system main blackboard.

Since the current implementation of the DYNACLIPS only uses CLIPS shell to represent an

intelligent agent, we have chosen to follow the syntax of the CLIPS to represent facts, rules or commands.
Knowledge Interface Format (KIF) [15,16] can also be used in the future to transfer facts, rules or
command s.
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